GROUP INFLUENCES ON SELF-AGGRESSION:
CONFORMITY AND DISSENTER EFFECTS

PAUL A. SLOAN
Michael E. DeBakey VAMC and the Baylor College of Medicine

MITCHELL E. BERMAN, VIRGIL ZEIGLER-HILL, AND JOSHUA S. BULLOCK
University of Southern Mississippi

Evidence that intentional self-aggressive behaviors are influenced by social groups comes almost exclusively from nonexperimental retrospective studies which fail to address underlying causal processes. Recently, we conducted a study in which experimentally manipulated group norms were found to directly influence self-aggressive behavior (Sloan, Berman, Zeigler-Hill, Greer, & Mae, 2006). The present study was designed to gain a better understanding of the process by which social groups influence self-aggression. More specifically, we examined the effects of dissenters on the adoption of a self-aggressive group norm. Participants (N = 164) were assigned to one of the following conditions: a unanimous self-aggressive group, a nonunanimous group with a single dissenter in either the first or last position who did not engage in self-aggressive behavior, and a group with no systematic agreement concerning self-aggression. Self-aggression was operationally defined as the use of an extreme shock that was self-administered by the participant within the context of an attention task. Results demonstrated that the adoption of a self-aggressive group norm was significantly weakened by the presence of a dissenter. This effect was moderated by gender such that the presence of a dissenter had a greater impact on the self-aggressive behavior of women than it did for men. Clinical and theoretical implications of these findings are discussed.

This study was supported in part by grants from the National Institutes of Health to Mitchell E. Berman (MH57133 and AA014025).

Correspondence concerning this article should be addressed to Paul A. Sloan, Ph.D., at Mental Health Care Line (116-CMHP), Michael E. DeBakey Veterans’ Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030. E-mail: paul.sloan@va.gov.
Social psychology has focused a considerable amount of attention on the role that social influence plays in determining behavior through the examination of group norms and conformity (e.g., Asch, 1951; Cialdini & Goldstein, 2004; Crandall, Eshleman, & O’Brien, 2002; Moore, 1921; Sherif, 1935; see Cialdini & Trost, 1998 for a review). A recent review of the conformity literature by Cialdini and Goldstein (2004) identified three motivating factors that are believed to play a role in group conformity. First, the *accuracy* goal motivates individuals to conform based on the desire to act appropriately in a given situation which results in their reliance on the behavioral cues of those constituting their social environment. Second, the *affiliation* goal motivates individuals to conform based on the need to be included in a group and to gain social approval. Individuals may satisfy this need by deliberately engaging in behavior that is consistent with the group norm or through nonconscious means such as behavioral mimicry (Chartrand & Bargh, 1999). Third, the *self-enhancement* goal motivates individuals to conform because their self-concept is based on the way they believe other people perceive them. Individuals may conform because acceptance by one’s group is often contingent on adherence to established group norms.

Explanations of conformity typically assume there is some benefit to be gained by conforming (e.g., effective behavior; Cialdini & Trost, 1998); however, previous research has established that individuals may be influenced by group norms even when the behavior is detrimental to their own health or well-being. A brief sample of potentially harmful behaviors that have been shown to be influenced by group norms include binge eating (Crandall, 1988), excessive dieting (Huon & Walton, 2000), smoking (Dupre, Miller, Gold, & Rospenda, 1995; Epstein, Botvin, & Diaz, 1999; Unger et al., 2001), excessive alcohol consumption (Baer, Stacy, & Larimer, 1991; Novak & Crawford, 2001; Perkins & Berkowitz, 1986; Perkins & Wechsler, 1996; Wood, Nagoshi, & Dennis, 1992), adolescent cocaine use (Dupre et al., 1995; Yarnold & Patterson, 1995), and gang involvement (Walker-Barnes & Mason, 2001). However, it is important to recognize that the negative consequences of these behaviors are usually either unintentional or secondary to some other aspect of the behavior (e.g., physical pleasure). That is, the intention of these behaviors is not usually self-harm even though such harm is a likely consequence.

Previous research has also supported the link between social processes and deliberate self-harm (i.e., self-aggression; Favazza, 1996, 1998; Pigg & Geen, 1971). However, the vast majority of these stud-
ies provide limited information regarding the underlying causal processes linking social processes and self-aggression due to their correlational nature (e.g., Brent et al., 1989; Fennig, Carlson, & Fennig, 1995; Haw, 1994; Rada & James, 1982; Robbins & Conroy, 1983; Rosen & Walsh, 1989; Ross & McKay, 1979; Taiminen, Kallio-Soukainen, & Nokso-Koivisto, 1998; Walsh & Rosen, 1985; see Joiner, 1999, or Stack, 2000, for a discussion of this issue). To determine whether social processes could actually cause individuals to engage in self-aggressive behavior, Berman and his colleagues recently conducted several experimental studies demonstrating that self-aggressive behavior could be induced through exposure to either a single self-aggressive model (Berman & Walley, 2003; McCloskey & Berman, 2003) or an established self-aggressive group norm (Sloan, Berman, Zeigler-Hill, Greer, & Mae, 2006).

The Self-Aggression Paradigm (SAP; Berman & Walley, 2003; McCloskey & Berman, 2003) is a recently developed measure of self-aggressive behavior which involves the participant engaging in a competitive reaction-time task with a fictitious opponent. On each reaction-time trial, the participant—and the fictitious opponent—is asked to select a shock level that is self-administered if the participant loses that particular trial. To examine the influence of a single self-aggressive model, the participant is notified about the level of shock the (fictitious) opponent selected to self-administer at the end of each trial (Berman & Walley, 2003; McCloskey & Berman, 2003). In both of these studies, the wins and losses for each trial and the shock selections of the opponent were preprogrammed. The results of these studies found that participants tended to model their self-aggressive behavior on the behavior of their opponent. That is, participants tended to self-administer more intense shocks as their opponents selected increasingly severe shocks.

To examine whether the establishment of self-aggressive group norms would alter the behavior of individuals, Sloan et al. (2006) had individuals complete a computer-competition version of the SAP. Rather than ostensibly competing against another live participant, individuals in this study were pitted against a computer that was set to perform “... at about the same level as the typical college student.” Group norms were established by having four fictitious participants engaging in similar computer-competition versions of the SAP at the same time and announcing their selected level of shock over an intercom system. The results of the study found that the behavior of participants was consistent with clearly established
high- or low-self-aggressive group norms. That is, participants self-administered higher levels of shock when they believed the other participants were engaging in this behavior.

In the present study, we sought to better understand the role of social influences on self-aggressive behavior by examining conformity to a self-aggressive group norm in the presence of a dissenter. Although previous research has demonstrated that unanimous groups exert a tremendous amount of influence over the behavior of individuals, the presence of even a single dissenter has been found to significantly decrease conformity (Asch, 1955; Cialdini & Goldstein, 2004; Crandall et al., 2002; Morris & Miller, 1975; Stangor, Sechrist, & Jost, 2001). The serial position of the dissenter was also considered to be potentially important because previous research has shown that early (preempting) dissent has greater impact than later (breaking) dissent (Allen & Levine, 1971; Morris & Miller, 1975; Morris, Miller, & Spangenberg, 1977). For the present study, it was predicted that participants in the Unanimous Group Influence Condition (i.e., each of the subjects engages in self-aggressive behavior) would set a higher proportion of extreme shocks than participants in either of the Dissenter Conditions (i.e., Preempting Dissenter Condition and Breaking Dissenter Condition) or the No Systematic Agreement Condition which served as the control group.

Exploratory analyses concerning gender were conducted because the existence and importance of gender differences in conformity rates remains unclear. Although various studies have shown that women show higher rates of conformity than men (e.g., Divesta & Cox, 1960; Gerald, Wilhelmy, & Conolley, 1968; Rotter, 1967), there are also studies suggesting that there is no gender difference in the tendency to conform (Ex, 1960; Glinski, Glinski, & Slatin, 1970; Myers & Arenson, 1968). As a result of these inconsistent results from the previous literature, no specific predictions were made concerning gender. In addition, the public nature of participant behavior was manipulated such that half of the participants believed their behaviors were private and half believed their behaviors were being shared with other participants. This manipulation was included because previous research has shown that individuals are often less conforming when they believe their behavior is private than when they believe their behavior is available to others (Argyle, 1956; Asch, 1956; Deutsch & Gerard, 1955).
METHOD

PARTICIPANTS

Participants were 200 undergraduates enrolled in psychology courses who participated in exchange for course credit. Participants were recruited via notices asking for volunteers interested in a laboratory study concerning how sensory feedback, in the form of electrical stimulation, influences attention. Of the 200 participants who began the study, 20 participants were excluded because they indicated suspicion regarding the true nature of the task during the debriefing procedure and 16 additional participants were excluded for selecting the most extreme level of shock before the fourth trial which resulted in them learning that this selection did not actually deliver a severe shock prior to the experimental manipulation. Analyses were conducted using the remaining 164 participants (93 women and 71 men). The average age of participants was 21.13 years (SD = 4.19). Most participants self-identified their race as either Black (n = 80; 48.8%) or White (n = 74; 45.1%), with the remaining 6% self-identifying as Hispanic, Native American, Asian, or Other.

SELF-AGGRESSION PARADIGM (SAP)

The SAP is a laboratory measure of self-aggressive behavior that was originally employed as a competitive reaction-time cover-task with another (fictitious) participant (Berman & Walley, 2003; Berman, Jones, & McCloskey, 2005; McCloskey & Berman, 2003; Sloan et al., 2006). Specifically, participants in previous studies were told that they were taking part in a reaction-time task concerning the effects of electrical stimulation on reaction time and that they would receive an electric shock if their reaction time was not faster than the reaction of their fictitious opponent. In actuality, the outcome of each trial was predetermined with participants losing 50% of trials and receiving the accompanying self-selected electric shock regardless of their reaction-time performance. For the SAP, self-aggressive behavior is defined as the level of the electric shock selected by the participants. The validity of the SAP has been supported by its associations with self-ratings of suicidal and self-aggressive behaviors, as well as the ability of the SAP to discriminate between individuals along a variety of dimensions that are theoretically or empirically
related to extra-laboratory self-aggression (Berman et al., 2005; Berman & Walley, 2003; McCloskey & Berman, 2003). In support of the notion that the SAP is not merely assessing competition or the motivation to respond in a socially desirable manner, performance on this task is unrelated to self-rated motivation to win at the reaction-time task, actual reaction time performance, or social desirability response bias (Berman & Walley, 2003; McCloskey & Berman, 2003).

In the context of the original SAP, however, the use of a reaction-time cover task introduces some degree of risk taking on each trial. That is, the participant may believe that he or she is going to win a trial and may set a shock without any regard for personal well-being or that he or she is going to lose a trial and may be particularly conservative with shock selection. The selection, therefore, is confounded with expectations of winning or losing any particular trial. For the present study, participants were told that the purpose of the study was to examine the effects of electrical stimulation on attention and were simply informed that the task involved self-administration of shock, thus minimizing the role of risk-taking in shock selections. This modified cover task has been used in recent SAP studies (e.g., Berman, Bradley, Fanning, & McCloskey, 2007).

PROCEDURE

Upon arrival at the laboratory, the participant was told that four other subjects were already present and that these subjects were waiting in four adjacent rooms (labeled Rooms 1 through 4) in the laboratory. The participant was told that he or she was Subject 5 and escorted to the remaining room in the research suite (Room 5). An audio recording with the voices of either four men or four women was played over the intercom system in the research suite to simulate the presence of the other subjects. These audiotapes were matched to the gender of the participant to avoid confounding the experimental manipulation with potential gender variance.

A fingertip electrode was attached to the participant’s nondominant index and middle fingers. The participant was informed that electrodes were attached to the fingers of the other subjects in the same way. Immediately after the fingertip electrode was attached, a brief overview of a “shock threshold determination” procedure used to calibrate the 10-shock was provided, as well as a brief description of the SAP task. The participant’s (and ostensibly the subjects’) upper-threshold (pain threshold) was next determined by
administering 1 second shocks increasing in intensity by 100 microampere intervals until the participant rated the shock as definitely painful. Shock thresholds for the subjects were determined in order (Subjects 1-5) and an audio recording of the threshold procedure for the subjects was played over the intercom. The task instructions were then read to the participant and the subjects over the intercom system. The reported purpose of the task was to examine the effects of electrical stimulation on attention and, as part of that cover story, the participant was asked to remember trials in which a target stimulus appeared. The participant was also told that following the task they would be asked questions pertaining to the stimuli as well as the shock selections of the subjects.

The participant was informed that each of the subjects would complete six stimulus trials. Each trial was performed in sequence ostensibly beginning with Subject 1. The participant was told that he or she would be prompted in order to set a shock level by pressing one of the numeric entry keys on the computer keyboard, labeled 1 through 10, and 20. The shock selections of the subjects were presented on the participant’s computer screen. The participant was told that after everyone selected a shock, the space bar on the computer keyboard should be depressed until the word Release appeared on the computer monitor. At that time, the participant would release the space bar and receive a shock of the selected intensity after a delay of approximately one second.

The shock selections for the subjects were determined prior to the beginning of the study. For Trial 1, the participant saw four shock selections (3, 8, 5, and 9 for Trial 1) for the subjects that appeared to have no systematic agreement. Trials 2, 3, and 6 proceeded in a similar fashion. Trials 4 and 5, however, were part of the experimental manipulation and proceeded differently based on the Social Influence condition to which the participant had been randomly assigned. In the Unanimous Group Influence Condition, participants saw all the subjects select a 20-shock on both Trial 4 and Trial 5. In the Dissenter Conditions, one subject (either in the first or the fourth position) selected low shocks on Trials 4 and 5 (a 2-shock and a 3-shock, respectively) but the remaining subjects set 20-shocks on these trials. In the No Systematic Agreement Condition, none of the subjects set 20-shocks, and the pattern of shock selections by the subjects was designed to convey no meaningful group information (i.e., 7, 3, 3, and 6 on Trial 4; and 2, 10, 7, and 3 on Trial 5). This group
served as a comparison condition for shock selections on Trials 4 and 5.

Participants were told that a 10-shock would administer the level of shock that was determined to definitely be painful during the threshold determination, the 1-shock would administer a shock which they could barely feel, and the 5-shock represented a shock midway between the 1-shock and the 10-shock. Participants were informed that if they selected the 20-shock, they would receive a painful shock that was twice the intensity of the 10-shock and that this level of shock could result in minor tissue damage. If participants asked about the definition of “minor tissue damage,” they were told that it could be equivalent to a minor burn or scrape. This deception was used to more closely simulate self-aggression in real world settings which, by definition, included the possibility of harm (of course, neither the 10- nor 20-shocks inflicted any actual harm to participants).

For ethical reasons, the shock intensity delivered by the 20-shock option was actually the same as that delivered by the 10-shock (i.e., it was equal to the upper threshold determined before the task). However, the selection of any 20-shock by the participant demonstrates unequivocal intent to self-administer an extremely noxious stimulus. Therefore, the 20-shock has reasonable ecological validity as an index of self-aggressive behavior (Berman, Jones, & McCloskey, 2005; McCloskey & Berman, 2003). In addition, use of the 20-shock is consistently associated with self-report measures of self-aggression and suicidal tendencies such as the Self-Aggressive Behavior scale of the Life History of Aggression Questionnaire ($r = .31$), the Suicidal Behaviors Questionnaire ($r = .36$), and the Scale for Suicidal Ideation - Self Report ($r = .45$). Use of the 20-shock was also significantly correlated ($r = .36$) with current depressive symptoms (McCloskey & Berman, 2003). For these reasons, the 20-shock was used as the measure of self-aggressive behavior in the present study.

Additionally, half the participants were assigned to either a public or a private condition. In the public condition, participants were told that their shock selections would be displayed to the other participants engaged in the task. In the private condition, participants were told that no one else would have access to the shocks selected by the participants.
TABLE 1. Percentage of Participants Selecting the 20-Shock as a Function of Social Influence Condition

<table>
<thead>
<tr>
<th>Social Influence Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unanimous Group Influence ((n = 41))</td>
<td>56.1a</td>
</tr>
<tr>
<td>Preempting Dissenter ((n = 40))</td>
<td>30.0b</td>
</tr>
<tr>
<td>Breaking Dissenter ((n = 41))</td>
<td>26.8b,c</td>
</tr>
<tr>
<td>No Systematic Agreement ((n = 42))</td>
<td>11.9c</td>
</tr>
</tbody>
</table>

Note. Values not sharing a subscript are different at \(p < .05\).

RESULTS

CONFORMITY TO SELF-AGGRESSIVE GROUP NORM

Self-aggression was defined as any self-selection of the 20-shock on either of the critical trials (i.e., trials 4 or 5). Accordingly, the dependent variable was the proportion of participants in each condition that selected a 20-shock on either of these trials. This approach, rather than examining the trials individually, provides a test of any selection of the most extreme—and most painful—shock on these critical trials. Analyses were performed using chi-square and binary logistic regression. The primary independent variable was Social Influence Condition (Unanimous Group Influence vs. Preempting Dissenter vs. Breaking Dissenter vs. No Systematic Agreement).

The present analyses examined whether exposure to group norms influenced selection of the 20-shock. Analyses revealed that the proportion of participants selecting the 20-shock varied as a function of condition, \(\chi^2(3, N = 161) = 19.55, p < .001\). The percentage of participants within each condition who selected the 20-shock is presented in Table 1. Post hoc analyses revealed that a higher proportion of participants in the Unanimous Group Influence Condition (56%) selected the 20-shock than participants in any of the other conditions. A significant difference also emerged between the Preempting Dissent and No Systematic Agreement Conditions. Similarly, a marginal difference emerged between the Breaking Dissent and No Systematic Agreement Conditions indicating that a higher percentage of participants in the Breaking Dissent Condition selected the 20-shock than participants in the No Systematic Agreement Condition.
Although no specific predictions were made concerning gender, differences between men and women were explored. No gender differences emerged concerning the selection of the 20-shock (35% for men vs. 28% for women), $X^2(1, N = 163) = 1.0$, ns. However, a significant interaction emerged for Social Influence Condition and gender, $X^2(7, N = 157) = 23.54$, $p < .001$. Figure 1 presents the percentage of men and women within each Social Influence Condition who selected the 20-shock. Supplementary analyses are presented in Table 2. These analyses found that individuals in the Unanimous Group Influence Condition were more likely to select the 20-shock than individuals in the No Systematic Agreement Condition regardless of gender. However, gender was very important for determining how individuals responded to the presence of a dissenter. Although the conformity rate for men did not differ between the Unanimous Group Influence Condition and the Dissenter Conditions, these rates did differ for women such that they were less likely to conform in the presence of a dissenter.
Conformity And Private Behavior

There was no significant difference between the Public Condition (27.5%) and the Private Condition (34.5%) with regard to their likelihood of selecting the 20-shock, $\chi^2(1, N = 163) = 0.94$, ns, nor did Public-Private behavior moderate the results for the Social Influence Condition, $\chi^2(3, N = 161) = 3.83$, ns.

Discussion

Earlier experimental studies have shown that both a self-aggressive model (Berman & Walley, 2003; McCloskey & Berman, 2003) and self-aggressive group norms (Sloan et al., 2006) are associated with elevated levels of self-aggression in an observer. However, the influence of dissent on the adoption of self-aggressive group norms had not been examined. Accordingly, the purpose of the present investigation was to examine whether individuals conform to a self-aggressive group norm in the presence of a dissenter.
The present study examined whether the presence of a single dissenter in an otherwise unanimous self-aggression group would attenuate self-aggressive behavior. As expected, significantly fewer participants engaged in self-aggression without a clearly established self-aggressive group norm. That is, when the subjects showed no agreement concerning their self-selected levels of shock (and none selected the 20-shock), participants were less likely to select the 20-shock. In contrast, when a clearly established self-aggressive group norm was evident, the majority of participants selected the 20-shock even though they had been led to believe this shock would be painful and could potentially cause minor tissue damage. Of particular interest was the role of a single dissenter on conformity to this self-aggressive group norm. In the presence of a single dissenter, participants were less likely to select the 20-shock than were participants who were exposed to the unanimous group influence; however, these participants were at least somewhat more likely to use the 20-shock than were participants who were in the No Agreement condition. These results are consistent with the findings of previous studies demonstrating high rates of conformity in a unanimous group context (Asch, 1951; Crutchfield, 1955; Sloan et al., 2006) and decreased rates of conformity in the presence of a dissenter (Allen & Levine, 1969; Asch, 1955; Hardy, 1957; Malof & Lott, 1962; Milgram, 1965; Morris & Miller, 1975). In contrast to expectations, the placement of the dissenting behavior in terms of being earlier or later in the group did not have an impact on the shock selections of participants. That is, whether the dissenting opinion was first (i.e., preempted the group influence) or immediately before the participant (i.e., conflicted with the group norm) had no influence on participant selection of the 20-shock.

The decrease in conformity rates in the presence of a dissenter could be explained by the motives outlined by Cialdini and Goldstein (2004). First, the presence of a dissenter may serve to broaden the scope of acceptable behavior by adding a behavioral alternative such that not engaging in self-aggression seems more acceptable. Second, affiliation with the dissenter may satisfy the affiliation needs of the individual. Third, the dissenter may have lessened the individual’s concerns about negative evaluations from other members of the group by diffusing the individual’s evaluation apprehension and by creating the possibility that the dissenter will view the individual positively. In essence, having an ally allows individuals
to take greater risks with respect to the disapproval of the remaining group members.

In addition to being consistent with previous findings that a unanimous group norm can lead to increases in self-aggressive behavior (Sloan et al., 2006), the present results also extended previous findings in three ways. First, the present study causally demonstrates that group norms can produce increases in displays of extreme self-aggression (i.e., selection of the 20-shock). This is important because extreme self-aggression is more consistent with the sorts of self-injurious behaviors that may be inflicted outside the laboratory. Second, the present results show that the presence of dissenters can lead to decreases in conformity within the context of self-aggression. Third, the effects of the dissenter were moderated by gender such that men responded differently than women to the presence of the dissenter. The shock selections of male participants in the two Dissenter Conditions were not significantly different from the male participants in the Unanimous Group Influence Condition but differed at least somewhat from the male participants in the No Systematic Agreement Condition. In contrast, women in the Dissenter Conditions set significantly fewer 20-shocks than the women in the Unanimous Group Influence Condition but did not differ from women in the No Systematic Agreement Condition. Therefore, men appeared to disregard the voice of the dissenter, although women were strongly influenced by it.

The gender difference in response to the presence of dissenter may be related to the goals of affiliation or maintaining a positive self-concept (Cialdini & Goldstein, 2004). Men may be more likely to engage in risk-taking behavior, particularly if there is a social norm that espouses such a behavior, and may be more likely to disregard a dissenting opinion, particularly if it relates to their self-concept. This would seem to be especially likely if self-aggressive behavior is viewed as a primarily masculine activity because individuals prefer to engage in behaviors they believe are gender-appropriate (Bem & Lenney, 1976; Bosson, Prewitt-Freilino, & Taylor, 2005; Bosson, Taylor, & Prewitt-Freilino, 2006; Herek, 1986; Pleck, 1981). Another explanation for this gender difference may be that men are more likely to engage in socially deviant behavior, particularly if they are part of a subculture or counterculture that expresses a socially deviant norm. It is important to note that men’s selections of the 20-shock were virtually identical to women’s selections in the Non-
Dissenter Conditions (i.e., the Unanimous Group Influence and No Systematic Agreement Conditions). This shows that the behaviors of men and women only diverge when there is a dissenter present. Therefore, differences in aggressive or self-aggressive tendencies as a function of gender cannot explain this finding. This difference in how men and women respond to the presence of a dissenter may have been due to the subject area of the present research. That is, the study of self-aggressive behavior--because of its link with the ability to tolerate pain--may have led men to be more dismissive of dissent than would be the case in situations that were not directly tied to one's gender role. Men may have perceived the dissenter as weak or lacking in masculinity because of his choice to avoid the pain associated with selection of the 20-shock, even though the selection of this shock was purported to be harmful. In contrast, women may have been somewhat more receptive to dissent as a means for escaping the physical pain associated with conforming to a self-aggressive group norm.

The present results may have implications for the treatment of self-aggressive behavior. More specifically, it may be possible to decrease the self-aggression of women by increasing their exposure to nonself-aggressive models, particularly models who closely resemble the target, possess high levels of status or regard, and are shown resisting self-aggressive group norms. This speculation is consistent with the findings of Ross and McKay (1979) which focused on female adolescents. However, it may be more difficult to decrease the self-aggressive behavior of men, particularly within the context of a group norm because of their tendency to ignore dissent. It is important for future research to determine how many self-aggressive models are required to influence self-aggression in men.

There were some specific limitations of this study. A primary limitation was that participation in this study was restricted to college students. This obviously limits our ability to generalize the results of the present study to either the general population or clinical populations. It is possible that age may be a factor for conformity to self-aggressive group norms, so future research should seek to include a more representative distribution of ages. Due to self-aggression contagion research generally involving suicide, suicide attempts, or self-mutilation, future researchers should consider including clinical populations in studies concerning social influences on self-aggression. Another limitation is that participants were aware that the study involved selection of “mild to moderate electrical stimula-
tion” and, as a result, they may have self-selected into the study—or out of the study—based on this information. If this is the case, then individuals who are more likely to engage in risk taking or self-aggressive behaviors may have biased the present sample. However, it is impossible to say whether self-selection was a mitigating factor.

Although there are a number of benefits that stem from the use of an experimental design (e.g., clear temporal ordering of events, isolation of potential confounds), there are also limitations with this approach. For example, the present research is limited by the artificiality of participating in a laboratory study. Selecting electrical shocks in the laboratory is clearly not the same sort of behavior as cutting or burning oneself. However, we do propose that the SAP is a reasonable laboratory analogue for these sorts of self-injurious behaviors because there are a variety of studies which have demonstrated the behavioral link between laboratory aggression paradigms, such as the Taylor Aggression Paradigm (Taylor, 1967) on which the SAP is based, and real-life aggressive behavior (see Anderson & Bushman, 1997 and Giancola & Chermack, 1998, for a review). It is not suggested that shooting, stabbing, or even punching someone is equivalent to selecting a relatively minor shock, but it is believed that much can be learned from these laboratory-based aggression paradigms. Given the SAP's validation by associations with history and ratings of actual self-injurious behavior, this paradigm offers a potentially important means to study these behaviors prospectively under controlled laboratory conditions.

In conclusion, this study replicated and extended the results of Sloan et al. (2006) which found that the establishment of a group norm can influence individuals to engage in self-aggression. The present study extended these previous findings by demonstrating that the presence of a dissenter significantly reduces the tendency for individuals to conform to a self-aggressive group norm. Importantly, the influence of a dissenter on conformity was moderated by gender such that women were less likely to conform to a self-aggressive group norm following exposure to a dissenter than were men. It is also important to note that the self-aggressive behavior examined in the present study was somewhat extreme for a laboratory study because participants were told that selecting an extreme shock had the potential to cause minor tissue damage. This extends previous research in this area by more closely approximating the sorts of self-injurious behaviors that are of concern to clinicians.
REFERENCES

