Non-parametric Tests

PSY 512: Advanced Statistics for Psychological and Behavioral Research

Goals
- When and why we use non-parametric tests?
- Introduce the most popular non-parametric tests
 - Binomial Test
 - Chi-Square Test
 - Mann-Whitney U Test
 - Wilcoxon Signed-Rank Test
 - Kruskal-Wallis Test
 - Friedman's ANOVA
 - Spearman Rank Order Correlation

When to Use Non-Parametric Tests
- Non-parametric tests are used when assumptions of parametric tests are not met such as the level of measurement (e.g., interval or ratio data), normal distribution, and homogeneity of variances across groups
- It is not always possible to correct for problems with the distribution of a data set
 - In these cases we have to use non-parametric tests
 - They make fewer assumptions about the type of data on which they can be used
 - Many of these tests will use “ranked” data
The binomial test is useful for determining if the proportion of responses in one of two categories is different from a specified amount.

Example: Do you prefer cats or dogs?
The binomial test shows that the percentage of participants selecting "cat" or "dog" differed from .50. This shows that participants showed a significant preference for dogs over cats.

The chi-square (χ^2) statistic is a nonparametric statistical technique used to determine if a distribution of observed frequencies differs from the theoretical expected frequencies. Chi-square statistics use nominal (categorical) or ordinal level data. Instead of using means and variances, this test uses frequencies.

The value of the chi-square statistic is given by $\chi^2 = \sum \frac{(F_o - F_e)^2}{F_e}$

- F_o = Observed frequency
- F_e = Expected frequency
Analyzing Frequencies: Chi-Square

- χ^2 summarizes the discrepancies between the expected number of times each outcome occurs and the observed number of times each outcome occurs, by summing the squares of the discrepancies, normalized by the expected numbers, over all the categories (Dorak, 2006).

- Data used in a chi-square analysis has to satisfy the following conditions:
 - Randomly drawn from the population
 - Reported in raw counts of frequency
 - Measured variables must be independent
 - Observed frequencies cannot be too small (i.e., must be 5 observations or greater in each cell)
 - Values of independent and dependent variables must be mutually exclusive

Two Types of Chi-Square Test

- There are two types of chi-square test:
 - Chi-square test for goodness of fit, which compares the expected and observed values to determine how well an experimenter's predictions fit the data.
 - Chi-square test for independence, which compares two sets of categories to determine whether the two groups are distributed differently among the categories (McGibbon, 2006).

Chi-Square Test for Goodness of Fit

- Goodness of fit means how well a statistical model fits a set of observations.
- A measure of goodness of fit typically summarizes the discrepancy between observed values and the values expected under the model in question.
- The null hypothesis is that the observed values are close to the predicted values, and the alternative hypothesis is that they are not close to the predicted values.
- Example:
 - Flipping a coin 100 times to determine if it is "fair".
 - Observed: 47 heads and 53 tails.
 - Expected: 50 heads and 50 tails.
Chi-Square Test for Goodness of Fit in SPSS

<table>
<thead>
<tr>
<th>outcome</th>
<th>coin_freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>heads</td>
<td>47.00</td>
</tr>
<tr>
<td>tails</td>
<td>53.00</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The chi-square test for independence is used to determine the relationship between two variables of a sample. In this context, independence means that the two factors are not related. Typically in social science research, we are interested in finding factors that are related (e.g., education and income).

The null hypothesis is that the two variables are independent and the alternative hypothesis is that the two variables are not independent.

- It is important to keep in mind that the chi-square test for independence only tests whether two variables are independent or not—it cannot address questions of which is greater or less.

Example: Is the likelihood of getting into trouble in school the same for boys and girls?

- Followed 237 elementary students for 1 semester
- Boys: 46 got into trouble and 71 did not get into trouble
- Girls: 37 got into trouble and 83 did not get into trouble

The χ² shows that the observed frequencies do not significantly differ from the expected frequencies.
The χ² shows that the two variables are independent such that boys and girls are equally likely to get into trouble.

Non-parametric Alternatives

<table>
<thead>
<tr>
<th>Parametric Test</th>
<th>Non-parametric Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-Independent-Samples t-Test</td>
<td>Mann-Whitney U Test</td>
</tr>
<tr>
<td>Two-Dependent-Samples t-Test</td>
<td>Wilcoxon Signed-Rank Test</td>
</tr>
<tr>
<td>One-Way ANOVA</td>
<td>Kruskal-Wallis Test</td>
</tr>
<tr>
<td>Repeated-Measures ANOVA</td>
<td>Friedman's ANOVA</td>
</tr>
<tr>
<td>Pearson Correlation or Regression</td>
<td>Spearman Correlation</td>
</tr>
</tbody>
</table>

Mann–Whitney U Test

- This is the non-parametric equivalent of the two-independent-samples t-test.
 - It will allow you to test for differences between two conditions in which different participants have been used.
- This is accomplished by ranking the data rather than using the means for each group:
 - Lowest score = a rank of 1
 - Next highest score = a rank of 2, and so on
 - Tied ranks are given the same rank: the average of the potential ranks
 - The analysis is carried out on the ranks rather than the actual data
Example of Mann-Whitney U

- A neurologist investigated the depressant effects of two recreational drugs
 - Tested 20 night club attendees
 - 10 were given an ecstasy tablet to take on a Saturday night
 - 10 were allowed to drink only alcohol
 - Levels of depression were measured using the Beck Depression Inventory (BDI) the day after (i.e., Sunday) and four days later (i.e., Wednesday)

- Rank the data ignoring the group to which a person belonged
 - A similar number of high and low ranks in each group suggests depression levels do not differ between the groups
 - A greater number of high ranks in the ecstasy group than the alcohol group suggests the ecstasy group is more depressed than the alcohol group

Mann-Whitney U Formula

\[U = n_1n_2 + \frac{n_1(n_1+1)}{2} - R_1 \]

- \(n_1 \) = number of participants in group 1
 - Group 1 is the group with the highest summed ranks
- \(n_2 \) = number of participants in group 2
- \(R_1 \) = the sum of ranks for group 1
First enter the data into SPSS
- Because the data are collected using different participants in each group, we need to input the data using a coding variable
 - For example, create a variable called 'Drug' with the codes 1 (ecstasy group) and 2 (alcohol group)
- There were no specific predictions about which drug would have the most effect so the analysis should be two-tailed
- First, run some exploratory analyses on the data
 - Run these exploratory analyses for each group because we will be looking for group differences

Mann-Whitney U in SPSS

The Kolmogorov-Smirnov test (K-S test) is a non-parametric test for the equality of continuous, one-dimensional probability distributions that can be used to compare a sample with a reference probability distribution (i.e., is the sample normally distributed?)

The Sunday depression data for the Ecstasy group is not normal which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.
The Sunday depression data for the Alcohol group is normal.

The Wednesday depression data for the Ecstasy group is normal.

The Wednesday depression data for the Alcohol group is not normal which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.
The Shapiro-Wilk Test also examines whether a sample came from a normally distributed population. In this example, the results of this test are highly consistent with those of the Kolmogorov-Smirnov Test. However, if these two tests differ, then you should usually use the Shapiro-Wilk Test.

The Levene Test compares the variances of the groups. The Levene Test did not find a significant difference in the variance for these two samples for the Sunday depression scores.
The Levene Test did not find a significant difference in the variance for these two samples for the Wednesday depression scores.
The first part of the output summarizes the data after they have been ranked.

The second table (below) provides the actual test statistics for the Mann-Whitney U Test and the corresponding z-score.

The significance value gives the two-tailed probability that a test statistic of at least that magnitude is a chance result, if the null hypothesis is true.

The Mann-Whitney U was not significant for the Sunday data which means that the Alcohol and Ecstasy groups did not differ in terms of their depressive symptoms on Sunday.
Output from the Mann-Whitney U

- The second table (below) provides the actual test statistics for the Mann-Whitney U Test and the corresponding z-score.
- The significance value gives the two-tailed probability that a test statistic of at least that magnitude is a chance result, if the null hypothesis is true.

<table>
<thead>
<tr>
<th>Test Statistics</th>
<th>Both Depression Inventory</th>
<th>Both Depression Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann-Whitney U</td>
<td>98.900</td>
<td>105.500</td>
</tr>
<tr>
<td>Z</td>
<td>-1.106</td>
<td>-0.698</td>
</tr>
<tr>
<td>Asymptotic Sig. (2-tailed)</td>
<td>> .500</td>
<td>> .500</td>
</tr>
</tbody>
</table>

The Mann-Whitney U was significant for the Wednesday data which means that the Alcohol and Ecstasy groups differed in terms of their depressive symptoms on Wednesday.

Calculating an Effect Size

- The equation to convert a z-score into the effect size estimate r is as follows (from Rosenthal, 1991):

$$r = \frac{z}{\sqrt{N}}$$

- z is the z-score that SPSS produces.
- N is the total number of observations.
- We had 10 ecstasy users and 10 alcohol users and so the total number of observations was 20.

$$r_{\text{Ecstasy}} = \frac{-1.11}{\sqrt{20}} = -0.25$$

$$r_{\text{Wednesday}} = \frac{-3.48}{\sqrt{20}} = -0.78$$

Reporting the Results

- Depression levels in ecstasy users ($Mdn = 17.50$) did not differ significantly from alcohol users ($Mdn = 16.00$) the day after the drugs were taken, $U = 35.50$, $z = -1.11$, ns, $r = -0.25$. However, by Wednesday, ecstasy users ($Mdn = 33.50$) were significantly more depressed than alcohol users ($Mdn = 7.50$), $U = 4.00$, $z = -3.48$, $p < .001$, $r = -0.78$.
Wilcoxon Signed-Rank Test

- Used to compare two sets of dependent scores (i.e., naturally occurring pairs, researcher-produced pairs, repeated measures)
- Imagine the experimenter in the previous example was interested in the change in depression levels for each of the two drugs
 - We still have to use a non-parametric test because the distributions of scores for both drugs were non-normal on one of the two days

Scores are ranked separately for the two groups. Scores that did not change (i.e., difference score = 0) are excluded from ranking. Difference scores are ranked in terms of absolute magnitude.

<table>
<thead>
<tr>
<th>Drug Group</th>
<th>Pre-Score</th>
<th>Post-Score</th>
<th>Difference</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>16</td>
<td>10</td>
<td>-6</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>8</td>
<td>-7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>8</td>
<td>-6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>6</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>-3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>2</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>-4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Running the Analysis

This analysis allows us to look at the change in depression score for each drug group separately...so the data file should be split by drug group (ecstasy v. alcohol)
If you have split the file, then the first set of results obtained will be for the ecstasy group. The Wilcoxon Signed-Rank Test was significant for the Ecstasy group which means that their depression symptoms increased from Sunday to Wednesday.

The effect size can be calculated in the same way as for the Mann–Whitney U Test. In this case SPSS output tells us that for the ecstasy group $z = -2.53$, and for the alcohol group is -1.99. In both cases we had 20 observations. Although we only used 10 people and tested them twice, it is the number of observations, not the number of people, that is important here.

The effect size is therefore:

- Ecstasy: $r_{\text{Ecstasy}} = \frac{-2.53}{\sqrt{20}} = -0.57$
- Alcohol: $r_{\text{Alcohol}} = \frac{-1.99}{\sqrt{20}} = -0.44$
• Reporting the values of z:
 - For ecstasy users, depression levels were significantly higher on Wednesday ($M = 32.00$) than on Sunday ($M = 19.80$), $z = -2.53$, $p < .05$, $r = -.57$. However, for alcohol users the opposite was true: depression levels were significantly lower on Wednesday ($M = 10.10$) than on Sunday ($M = 16.40$), $z = -1.99$, $p < .05$, $r = -.44$.

• The Kruskal-Wallis test (Kruskal & Wallis, 1952) is the non-parametric counterpart of the one-way independent ANOVA
 - If you have data that have violated an assumption then this test can be a useful way around the problem

• The theory for the Kruskal-Wallis test is very similar to that of the Mann-Whitney U and Wilcoxon test,
 - Like the Mann-Whitney test, the Kruskal-Wallis test is based on ranked data.
 - The sum of ranks for each group is denoted by R_i (where i is used to denote the particular group)

• Does eating soya affect your sperm count?

• Variables
 - Outcome: sperm (millions)
 - IV: Number of soya meals per week
 - No Soya meals
 - 1 soya meal
 - 4 soya meals
 - 7 soya meals

• Participants
 - 80 males (20 in each group)
Once the sum of ranks has been calculated for each group, the test statistic, H, is calculated as:

$$H = \frac{12}{N(N+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(N+1)$$

- R_i is the sum of ranks for each group
- N is the total sample size (in this case 80)
- n_i is the sample size of a particular group (in this case we have equal sample sizes and they are all 20)

Run some exploratory analyses on the data
- We need to run these exploratory analyses for each group because we're going to be looking for group differences

The Shapiro-Wilk test is a non-parametric test that can be used to compare a sample with a reference probability distribution (i.e., is the sample normally distributed?)
Run some exploratory analyses on the data.

• We need to run these exploratory analyses for each group because we're going to be looking for group differences.

The Shapiro-Wilk test shows that the “no soya” group is not normal which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.

The Shapiro-Wilk test shows that the “1 soya meal per week” group is not normal which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.

The Shapiro-Wilk test shows that the “4 soya meals per week” group is not normal which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.
Provisional Analysis

- Run some exploratory analyses on the data
 - We need to run these exploratory analyses for each group because we’re going to be looking for group differences.

 - The Shapiro-Wilk test shows that the “7 soya meals per week” group is normal which suggests that a parametric test could be used.

- The Levene test shows that the homogeneity of variance assumption has been violated which suggests that a non-parametric test should be used.

Running the Analysis
The Kruskal-Wallis test shows that there is a difference somewhere between the four groups… but we need post hoc tests to determine where these differences actually are.

One way to do a non-parametric post hoc procedure is to use Mann-Whitney tests.

However, lots of Mann-Whitney tests will inflate the Type I error rate.

- **Bonferroni correction**
 - Instead of using .05 as the critical value for significance for each test, you use a critical value of .05 divided by the number of tests you’ve conducted.
 - It is a restrictive strategy so it is a good idea to be selective about the comparisons you make.
 - In this example, we have a control group which had no soya meals. As such, a nice succinct set of comparisons would be to compare each group against the control.

Comparisons:
- Test 1: one soya meal per week compared to no soya meals
- Test 2: four soya meals per week compared to no soya meals
- Test 3: seven soya meals per week compared to no soya meals

Bonferroni correction:
- Rather than use .05 as our critical level of significance, we’d use .05/3 = .0167

The Mann-Whitney test shows that there is not a difference between the “no soya” group and the “1 soya meal per week” group.
The Mann-Whitney test shows that there is not a difference between the “no soya” group and the “4 soya meals per week” group.

The Mann-Whitney test shows that there is a significant difference between the “no soya” group and the “7 soya meals per week” group.

For the first comparison:
- (no soya vs. 1 meal) $z = -0.243$, the effect size is therefore: $r_{\text{NoSoya-1meal}} = \frac{-0.243}{\sqrt{2(3404/2879)}} = -0.04$

For the second comparison:
- (no soya vs. 4 meals) $z = -0.325$, the effect size is therefore: $r_{\text{NoSoya-4meal}} = \frac{-0.325}{\sqrt{2(3404/2879)}} = -0.05$

For the third comparison:
- (no soya vs. 7 meals) $z = -2.597$, the effect size is therefore: $r_{\text{NoSoya-7meal}} = \frac{-2.597}{\sqrt{2(3404/2879)}} = -0.41$
Differences Between Several Related Groups: Friedman's ANOVA

- Used for testing differences between conditions when:
 - There are more than two conditions
 - There is dependency between the groups (naturally occurring pairs, researcher-produced pairs, repeated measures)
- The theory for Friedman's ANOVA is much the same as the other tests: it is based on ranked data
- Once the sum of ranks has been calculated for each group, the test statistic, F_r, is calculated as:

$$F_r = \frac{12}{N(k+1)} \sum_{i=1}^{k} R_i^2 - 3(N+1)$$

Example

- Does the 'Atkins' diet work?
- Variables
 - Outcome: weight (Kg)
 - IV: Time since beginning the diet
 - Baseline
 - 1 Month
 - 2 Months
- Participants
 - 10 women

<table>
<thead>
<tr>
<th>Person</th>
<th>Start (Kg)</th>
<th>Month 1 (Kg)</th>
<th>Month 2 (Kg)</th>
<th>Rank</th>
<th>Start (Ranks)</th>
<th>Month 1 (Ranks)</th>
<th>Month 2 (Ranks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person 1</td>
<td>65.76</td>
<td>65.38</td>
<td>66.04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Person 2</td>
<td>62.98</td>
<td>63.24</td>
<td>63.21</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Person 3</td>
<td>65.06</td>
<td>67.70</td>
<td>77.39</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Person 4</td>
<td>102.77</td>
<td>102.71</td>
<td>91.33</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Person 5</td>
<td>65.50</td>
<td>65.45</td>
<td>72.67</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Person 6</td>
<td>120.41</td>
<td>119.06</td>
<td>114.26</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Person 7</td>
<td>60.01</td>
<td>62.90</td>
<td>60.01</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Person 8</td>
<td>71.97</td>
<td>73.62</td>
<td>66.43</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Person 9</td>
<td>55.31</td>
<td>73.81</td>
<td>71.83</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Person 10</td>
<td>76.02</td>
<td>67.56</td>
<td>65.02</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
The Shapiro-Wilk test shows that the "weight at start" is not normally distributed which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.

The Shapiro-Wilk test shows that the "weight after 1 month" is not normally distributed which suggests that the sampling distribution might also be non-normal and that a non-parametric test should be used.

The Shapiro-Wilk test shows that the "weight after 2 months" is normally distributed which suggests that a parametric test could be used.
The omnibus ANOVA is not significant which suggests that there is no difference between the weights of the participants at the three time points.

There is no need to do any post hoc tests for this example because the omnibus ANOVA was not significant.

For Friedman’s ANOVA we need only report the test statistic (χ^2), its degrees of freedom and its significance:

- The weight of participants did not significantly change over the two months of the diet, $\chi^2(2) = 0.20$, $p > .05$.
The Spearman Rank Order Correlation coefficient, \(r_s \), is a non-parametric measure of the strength and direction of linear association that exists between two variables measured on at least an ordinal scale. The test is used for either ordinal variables or for interval data that has failed the assumptions necessary for conducting the Pearson’s product-moment correlation.

Assumptions:
- Variables are measured on an ordinal, interval, or ratio scale.
- Variables do not need to be normally distributed.
- There is a linear relationship between the two variables.
- This type of correlation is not very sensitive to outliers.

Example: A teacher is interested in whether those students who do the best in Science also do the best in Math.
A Spearman’s Rank Order correlation was conducted to examine the association between the scores of 20 elementary students for their science and math courses. There was a strong, positive correlation between science and math scores which was statistically significant ($r_s[18] = .94, p < .001$).
Summary

- When data violate the assumptions of parametric tests we can sometimes find a nonparametric equivalent
 - Binomial Test
 - Compares probability of two responses
 - Chi-Square Test
 - Compares observed and expected frequencies
 - Mann-Whitney U Test
 - Compares two independent groups of scores
 - Wilcoxon Signed-Rank Test
 - Compares two dependent groups of scores
 - Kruskal-Wallis Test
 - Compares > 2 independent groups of scores
 - Friedman’s Test
 - Compares > 2 dependent groups of scores
 - Spearman’s Rank Order Correlation
 - Determines the strength of linear association between two variables