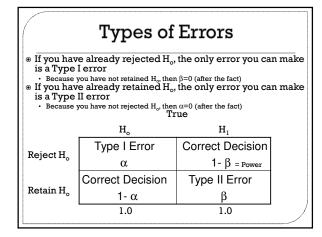
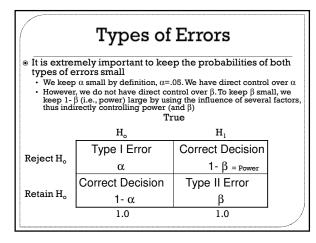

Types of Error and Power


PSY 5101: Advanced Statistics for Psychological and Behavioral Research

Types of Errors


- Two hypotheses, two decisions, two types of error: this was one of the seven topics common to all inferential methods
- ${\scriptstyle \odot}$ The two hypotheses are ${\rm H_o}$ and ${\rm H_1},$ and the two decisions are to Reject ${\rm H_o}$ and to Retain ${\rm H_o}$
- Now we come to the errors that you can make in hypothesis testing:
 - A Type I error: to reject H_o when H_o is true
 - + A Type II error: to retain H_o when H_0 is false (H_1 is true)

Power
• Power = p(rejecting $H_0 H_1$ is true) = 1- β
 We keep β small and 1-β large indirectly by using the influence of several factors: effect size N σ² α
• Use of appropriate type of hypotheses

Power: Effect Size

•Effect size, for $z_{\overline{X}}$ is $\gamma = \frac{(\mu - \mu_o)}{\sigma}$, the difference between the true mean and the mean given in the H_o divided by the population standard deviation

As effect size increases, power increases

Power: Sample Size (N)

Sample size (N) is the factor that gives you the greatest control over power
You usually can choose N
N has a great influence on power

•As N increases, power increases

$\textbf{Power:}\,\sigma^2$

 •σ² (population variance) offers you little direct control over power because it is difficult to influence

•As σ^2 decreases, power increases

Power: α

 α is the p(Type I error)
 α is usually set at .05 so it also offers you little control over power

• You can choose to use .01 or smaller but you will rarely use α larger than .05

•As α increases, power increases

Power: Type of Hypotheses

 Directional hypotheses have greater power if you are correct in predicting direction...but virtually zero power if you are wrong

 Non-directional hypotheses have good power in either direction...but lower power than a directional hypothesis in the correct direction