Hypothesis Testing

PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1

Reminder of Inferential Statistics

All inferential statistics have the following in common:

- Use of some descriptive statistic
- Use of probability
- Potential for estimation
- Sampling variability
- Sampling distributions
- Use of a theoretical distribution
- Two hypotheses, two decisions, & two types of error

Hypothesis Testing: Introduction

- This is the last of the seven topics common to all inferential statistics, and so it integrates all of the other six.
- Hypothesis testing uses probability and the sampling distribution of a statistic to make decisions about a parameter
- Hypothesis testing is the process of testing tentative guesses about relationships between variables in populations
- These relationships between variables are evidenced in a statement (a hypothesis) about a population parameter

Hypothesis Testing: Examples

• IQ of deaf children example: Are the deaf children lower in IQ? Or are they average? If μ =100 and σ ²=225, is the \overline{X} =88.07 from the sample of N=59 deaf children significantly lower than 100?

• Compute
$$z_{\overline{X}} = \frac{\overline{X} - \mu}{\sqrt{\frac{G^2}{N}}} = \frac{88.07 - 100}{\sqrt{\frac{225}{59}}} = \frac{-11.93}{1.95} = -6.11$$

• Find $p(\overline{X} < 88.07) = p(z_{\overline{X}} < -6.11) = .00003$. It is unlikely the deaf children came from a population with μ =100 for the mean IQ. So we decide that μ <100 and that the deaf children have lower IQ scores than the general population

. Remember, this is due to the fact that their language (ASL) is not English, so they score lower on the verbal part of the total IQ test

Hypothesis Testing: Examples

- Rat-shipment example:
 - Are the rats defective? Or are they OK? If μ =33 and σ^2 =361, is the \overline{X} =44.4 from the sample of N=25 rats significantly different from 33?

• Compute
$$z_{\overline{X}} = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{N}}} = \frac{44.4 - 33}{\sqrt{\frac{361}{25}}} = \frac{11.4}{3.8} = 3$$

• Find $p(\overline{X} > 44.4) = p(z_{\overline{X}} > 3) = .0013$. It is unlikely the rats came from a population with μ =33 for the mean run time. So, we decide that μ ≠33 and that the rats are defective

Hypothesis Testing: Key Terms

- Test statistic: a statistic used only for the purpose of testing hypotheses (e.g., $Z_{\overline{Y}}$)
- Assumptions: conditions placed on a test statistic necessary for its valid use in hypothesis testing
 - For z_{x̄}, the assumptions are that the population is normal in shape and that the observations are independent
- ${\scriptstyle \odot}$ Null hypothesis: the hypothesis that we test (H_{{\scriptstyle \circ}})
- Alternative hypothesis: where we put what we believe (H₁)
- ${\scriptstyle \odot}$ Both ${\rm H_o}$ and ${\rm H_l}$ are stated in terms of a parameter

Hypothesis Testing: Key Terms

- \odot Significance level: the standard for what we mean by a "small" probability in hypothesis testing (α)
- Directional and non-directional hypotheses
- One- and two-tailed tests, critical values, and rejection values
- Decision rules:
 - Critical value decision rules
 - p-value decision rules
 - <u>p-value</u> is the probability of obtaining a test statistic at least as extreme as the observed value given that the null hypothesis is true

Common Misunderstandings about p-values

- The p-value is <u>not</u> the probability that the null hypothesis is true
- The p-value is <u>not</u> the probability that a finding is merely a fluke
- The p-value is <u>not</u> the probability of falsely rejecting the null hypothesis
- The p-value is <u>not</u> the probability that a replicating study would yield a similar result
- (1 p-value) is <u>not</u> the probability of the alternative hypothesis being true
- The p-value does <u>not</u> determine α
- The p-value is <u>not</u> an indicator of the size or
- importance of an effect

$\rm H_{O}$ and $\rm H_{1}$

• Rat-shipment example:

- + We start with $H_1.We$ believe that there is something wrong with the rats or that $\mu{\neq}33$
- · So we have $H_1{:}\,\mu{\neq}33$
- Next, we state H. The null is always the opposite of the alternative. Within H_o and H₁, the set of potential values of the parameter to be tested usually contains all possible numbers. The null hypothesis usually has the "equals" in it
 So we have H₂: µ=33
- IQ of deaf children example:
- Again, we start with $H_1.We$ believe that the deaf children will score lower on the IQ test because English is not their native language or that $\mu{<}100$
 - So we have $H_1: \mu < 100$
- Next, we state H_o
- So we have $H_o: \mu \ge 100$

Significance Level

- The significance level is the small probability used in hypothesis testing to determine an unusual event that leads you to reject H_o
 - The significance level is symbolized by α (alpha)
 - The value of α is almost always set at α =.05
 - The value of $\boldsymbol{\alpha}$ is chosen before data are collected
 - If H_o is rejected when α =.05, here are examples of what you say: • "The mean of the IQ of deaf children, \overline{X} = 88.07, is significantly lower than 100, z = -6.11, p = .00003, one-tailed test"
 - "The mean of the run times, $\overline{X} = 44.4$, is significantly different from 33, z = 3.00, p = .0013"

Directional and Non-Directional Hypotheses

- Directional hypotheses specify a particular direction for values of the parameter
 - IQ of deaf children example:
 - H_o:μ≥100 • H₁:μ<100
- Non-directional hypotheses do not specify a particular direction for values of the parameter
 - · Rat shipment example:
 - H_o: µ=33
- $H_1: \mu \neq 33$ • Another example:
- Suppose you believe that dancers are more introverted than other people. You have N=26 dancers and know that for this age group with your male/female ratio that μ =19.15 for introversion $H_{z:1} \leq 10.15$
 - H_o.μ<u><19.15</u> • H₁:μ>19.15

One- and Two-Tailed Tests, Critical Values, and Rejection Values

• One- and two-tailed tests:

- A one-tailed test is a statistical test that uses only one tail of the sampling distribution of the test statistic
 A two-tailed test is a statistical test that uses two tails
- of the sampling distribution of the test statistic • Critical values are values of the test statistic
- that cut off α or $\alpha/2$ in the tail(s) of the theoretical reference distribution
- ${\scriptstyle \odot}$ Rejection values are the values of the test statistic that lead to rejection of $\rm H_{o}$

6

