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PSY 5101: Advanced Statistics for 

Psychological and Behavioral Research 1 

� Pivotal subject: distributions of statistics. 
“Foundation…linchpin…important…crucial”

� You need sampling distributions to make 
inferences:
• To get probabilities of statistics for decision making 

about parameters

• To get information necessary to estimate parameters

� A distribution that could be formed by drawing all 
possible samples of a given size N from some 
population, computing the statistic for each 
sample, and arranging these statistics in a 
distribution

� Every statistic has a sampling distribution

� Population:

• Distribution of all possible scores (Xs) 

• Usually large, unobtainable, and hypothetical

• Has parameters µ and σ2, the values of which are 

usually unknown 

• Unknown shape 

• We want to infer to one of the parameters or to 

the distribution itself
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� Sample: 

• Distribution of the N scores that we actually have 

(Xs) 

• Usually a manageable size, already obtained, and 

real

• Contained in what we will call our “real world”

• Has known statistics like � and s2

• Known shape

• We want to infer from one of the statistics to a 

parameter

� Sampling distribution: 

• Distribution of a statistic over all possible 
samples

� Example: �

• Shows the variability of the statistic

• Theoretical

• Has parameters and usually a known shape

• The bridge for the inference from the sample to 
the population (i.e., from the statistic to the 
parameter)

• Where we get the probabilities of the statistic so 
we can make decisions about the parameter

� IQ of deaf children example: Do deaf children have 
lower IQ scores than other children? Or are their 
scores the same as the average for the general 

population? If µ=100 and σ2=225, then would �	= 
88.07 from a sample of N=59 deaf children be 
considered to be significantly lower than 100?
� Note: IQ differences observed for deaf children appear to be 

due to the fact that their primary language (American Sign 
Language) is not English, so they score lower on the verbal 
part of the total IQ test

� What we are actually testing is the probability of 
obtaining a sample mean of 88.07 from 59 
participants drawn from a population with a mean 
of 100
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� = 88.07

s2

Real World 
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µ
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Sampling 
Distribution

µ 									�

σ2

�

N=59

Types of Distributions

� The sampling distribution of �
• Has the purpose of any sampling distribution: 

to obtain probabilities

• Has the definition of any sampling distribution: 
the distribution of a statistic

• Has specific characteristics:

� Mean: µ� = µ

� Variance : σ2
�

= 
σ2

�

� Standard error of the mean: σ
�

= 
σ

�
�

� This is just the square root of the variance

� Shape is normal if
� Population is normal

� N is large (more than about 30)

� Central Limit Theorem

Sampling 
Distribution

µ 								�

σ2

�

� IQ of deaf children: 

• What is the mean of this population 

distribution? Is it 100 as it is for the population 

of all IQ scores (µ=100 and σ2=225)?

• What is the probability of getting � = 88.07 or 

less if µ=100 (and σ2=225)?

• To get this probability, we need a   new 

statistic, �� = 
�	�	µ

σ2

�

�

� ��	= 
		.��	�
��

���

��

�
= -6.11

� p(�	< 88.07) = p(z < -6.11) < .00003

Sampling 
Distribution

µ 								�

σ2

�
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�IQ of deaf children: 
• So what does this look like 

and how does it help us 
decide about µ=100? Is 
the mean of the IQ of deaf 
children 100?

• Because the probability of 

getting �	= 88.07 or less if 
µ=100 is so small (less 
than .00003) we reject the 
idea that µ=100. 

• It is very unlikely to get 

the data that led to �	= 
88.07 from a population 
with µ=100.

Sampling 
Distribution

�

σ2

�

µ=100

�	= 88.07

�� = -6.11

�The sampling distribution of � is the first 

sampling distribution we learn but it is not 

the only one (all statistics have sampling 

distributions)

�All sampling distributions have in common:

• Purpose: to obtain probabilities

• Definition: the distribution of a statistic

�…but each sampling distribution has 

specific characteristics like mean, variance, 

and shape

Other Sampling Distributions

Sample

�

s2

Real WorldPopulation

µ

σ2

µ �
σ2

�

N=59

Sampling Distributions

s*2

�	�	


�
	σ2

positive skew

s2

σ2

positive skew

� Sampling distributions of s*2 and s2:
– Both have shapes that are positively skewed

– The mean of s*2 is 
�	�	


�
σ2, always smaller than σ2

– The mean of s2 is σ2
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Sample

�

s2

Real WorldPopulation

µ

σ2

ρ

symmetric

N=59

Sampling Distributions

s*: Mean 

is not σ

s: Mean is 

not σ

� Sampling distributions of r, s*, and s
� r: the mean is ρ (rho) if ρ=0, and the shape is symmetric 

but not normal
� s* and s: neither has a mean equal to σ

r

Other Sampling Distributions

� You need sampling distributions to make 
inferences:
• To get probabilities of statistics for decision making about 

parameters

• To get information necessary to estimate parameters

� Estimation is the calculation of an approximate value of a 
parameter

• Point estimation is the use of a statistic as a single value (point) 
to estimate a parameter

• Any statistic “can” be used to estimate any parameter

• Some statistics are good (and logical) estimates of particular 

parameters such as using � as an estimate of µ

• “Unbiased estimate” is one definition of “good estimate”

� Unbiased estimate: A statistic is an unbiased estimate of a 
parameter if the mean of its sampling distribution is 

equal to the parameter: µstatistic = desired parameter 

� The following statistics are unbiased estimates of their 

corresponding parameters:

• � is an unbiased estimate of µ because µ� = µ

• s2 is an unbiased estimate of σ2 because µs² = σ2

• r is an unbiased estimate of ρ because µr = ρ if ρ=0

� Note that the statistic and parameter can change but the 

definition of unbiased is µstatistic = desired parameter
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�The following statistics are not unbiased 
estimates of their corresponding parameters 

(each is a biased estimate):

• s*2 is a biased estimate of σ2 because µs*² ≠ σ2

• s* is a biased estimate of σ because µs* ≠ σ

• s is a biased estimate of σ because µs ≠ σ

�Note that the statistic and parameter can 

change but the definition of unbiased is 

µstatistic = desired parameter

• Always µ of the statistic with this µ being equal to the 

desired parameter

�The mean of the sampling distribution of s*2

is only a fraction of σ2 

• s*2 is a biased estimate of σ2 because it tends to be 
too small (not every value of s*2 will be too 

small…but on average it is an underestimate of σ2)

�Here is the “ideal” estimate of population 

variance: σ2 =
∑��	�µ���
�

�

• The problem is that we almost never know µ so we 

usually cannot use this formula

�Using � as an estimate of µ leads us to:

s*2 = 
∑��	�����
�

�

• Remember that � minimizes the sum of the squared 

deviations such that ∑�� � ����
� is as small as it can be 

and smaller than ∑�� � µ���
�

• The least-squares property of � makes it so that the 

estimate of σ2 is too small when � is used in place of 
µ
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�How much of an underestimate is s*2?
• Consider the means of the sampling distributions of the 

numerators of “ideal” formula and s*2 formula

• Mean of sampling distribution of ∑�� � µ���
� = Nσ2

• Mean of sampling distribution of ∑�� � ����
� = Nσ2-σ2

� The numerator of the formula for s*2 is too small by σ2

� Rewriting Nσ2-σ2 as σ2(N-1) offers a solution to the problem

� Mean of sampling distribution of ∑�� � ����
� = σ2(N-1) 

� Because ∑�� � ����
� has an average value of σ2(N-1), all you have 

to do is divide this numerator by N-1 instead of N and it will be 

an unbiased estimator of σ2

� Mean of sampling distribution of 
∑�������
�

��

= σ2

�� is an unbiased estimate of µ
• � for each sample will not always be equal to µ but 

there will not be any systematic error 

• That is, � may sometimes be larger than µ and may 
sometimes be smaller than µ

• However, if you repeatedly sample from the 
population, then the average � would equal µ

�X50 is only an unbiased estimate of µ when 
the population is symmetric
• Because X50 would be the same as � in that case

� It makes sense that the sample mean would 
be the best estimate of the population mean

�So far, we have focused on point estimation 
(estimating a parameter with a 
statistic)…now we will focus on interval 
estimation

� Interval estimation involves obtaining an 
interval of potential values for a parameter

�Example: � = 88.07 is the point estimate of µ
for the IQ of deaf children…but we cannot 
say that the population mean of the IQ of 
deaf children is exactly 88.07 because there 
is error in the estimate of �
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�Standard error of the mean is a measure of the 
amount of error in � as an estimate of µ
• Standard error of the mean = 

σ

�
�

� Notice that the standard error of the mean is the standard 
deviation of the sampling distribution of �…that is, it is the 
square root of the variance of the sampling distribution of �

which is 
σ�

�
� Large standard error means that there is a lot of variability 

between the means of different samples…so the mean of our 
sample may not be representative of the population

� To calculate standard error for a sample, we substitute s for σ: 	
s
�

�

�We use the standard error of the mean to place 
bounds on � in such a way that we are confident 
that they include the true value of µ a certain 
percentage of the times µ could be estimated

�Confidence interval is a range of values that 
is constructed such that a certain percentage 

of the time (usually 95% or 99%) the true 

value of the population mean will fall within 
these limits
• If we collected 100 samples, calculated the mean for 

each sample, and then calculated a confidence 
interval for that mean…then for 95 of those samples 
the confidence interval would contain the true value 
of the mean in the population 

�95% of z-scores fall between -1.96 and +1.96
� If our sample means are normally 

distributed with a mean of 0 and a standard 
error of 1, then the limits of our 95% 
confidence interval would be -1.96 and 
+1.96

�We could convert our raw scores to z-scores 
but we usually use the following equations 
instead (to maintain the original metric)
• Lower boundary of CI = � - (1.96*Standard Error)

• Upper boundary of CI = � + (1.96*Standard Error)

• Sample mean is always at the center of the CI
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µ
• Confidence intervals for µ each based 

on a different sample of size N

• Vertical line represents the constant 

fixed value of µ whereas the horizontal 

lines represent different confidence 

intervals for µ

• Most interval brackets include µ but 

some do not

• Note that the intervals vary but µ does 

not

• The location of each interval is a 

function of �, the length of each 

interval is fixed for a given N, σ2, and 

degree of confidence


