Probability

Probability

\qquad

- The classic theory of probability underlies \qquad much of probability in statistics
- It states that the chance of a particular outcome occurring is determined by the ratio of the number of favorable outcomes \qquad (or "successes") to the total number of outcomes
- Expressed as a formula:
$\mathrm{p}(A)=\frac{\text { Number of favorable outcomes }}{\text { Total number of possible outcomes }}$

Probability

- What is the probability of drawing the ace of spades from a deck of cards?
- How many ace of spades in a deck? \qquad 1
- How many cards in a deck? \qquad 52
- Probability of drawing an ace on a single draw is: $\frac{1}{52}=.0192$
\qquad
\qquad
\qquad

Probability

\qquad

- What is the probability of drawing an ace (of any kind) from a deck of cards?
- How many aces in a deck?

4

- How many cards in a deck?

52

- Probability of drawing an ace on a single draw is: $\frac{4}{52}=.077$
- In statistical analysis, probability is often expressed as a decimal and ranges from 0 (no chance) to a high of 1.0 (certainty)
- Always between 0 and 1
- Never negative

Probability and Inferential Statistics

- The logic of the Great Shazam example is similar to what is used for almost all inferential statistics
- First, a researcher makes a set of observations
- Second, these observations are compared with what we would expect to observe if nothing unusual was happening in the experiment (under conditions when the null hypothesis is true)
- This comparison is converted to a probability (i.e., the probability that the observed results would have emerged if the null hypothesis was true)
- Third, if this probability is sufficiently low, then we conclude that the alternative hypothesis is probably correct
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability

- Probability is defined as relative frequency of occurrence
\bigcirc Basic definitions:
\qquad
- Sample space: all possible outcomes of an experiment
- Elementary event: a single member of the sample space \qquad
- Event: any collection of elementary events
- Probability:
- $\mathrm{p}($ elementary event $)=\frac{1}{\text { Total number }}$
- $\mathrm{p}($ event $)=\frac{\text { Number in the event }}{\text { Total number }}$
- Conditional probability:
- $\mathrm{p}(\mathrm{A} \mid \mathrm{B})=\frac{\text { Number in }(A \text { and } B)}{\text { Numer in } B}$
- The probability of A in the redefined (reduced) sample space of B
\qquad
\qquad
\qquad
\qquad
\qquad

Probability:
 The Juror Example

- The sample space is all 48 jurors
- An elementary event is any one of the 48 jurors
\bigcirc An event is any subgroup of the 48 (e.g., the 31 who gave an award)
- Probabilities:
- $\mathrm{p}($ elementary event $)=\frac{1}{48}$
- p (award) $=\frac{31}{48}=.65$
\odot Conditional probability: p(Award|Authoritarian) $=\frac{18}{20}$
- The 20 Authoritarians are the reduced sample space
- Always do the denominator first
- Out of the 20 Authoritarians, the 18 who gave an award go in the numerator
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Probability:
 The Big Three (+1)

1. Independence: events A and B are independent if - $p(A)=p(A \mid B)$

The A probability is not changed by reducing the sample space to B OR the occurrence of one event does not change the probability of occurrence of another event
2. Multiplication (And) Rule: the probability of a joint occurrence - $p(A$ and $B)=p(A) p(B \mid A)=p(A \mid B) p(B)$

- Mutually exclusive:
- Events A and B do not have any elementary events in common
- Events A and B cannot occur simultaneously - $p(A$ and $B)=0$

3. Addition (Or) Rule: include all cases in one event or the other - $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$

\section*{Independence
 Award No Awar Totals
 | Authoritarian | Egalitarian |
| :---: | :---: |
| 18 | 13 |
| 2 | 15 |
| 20 | 28 |

- The first of the Big 3: Independence is $p(A)=p(A \mid B)$
- Is Award independent of Authoritarian? It is if $p($ Award $)=$ p(Award|Authoritarian)
- p (Award $)=\frac{31}{48}=.65$
- p (Award \mid Authoritarian $)=\frac{18}{20}=.90$
- No, Award is not independent of Authoritarian because $.65 \neq .90$
- Another example
- Is No Award independent of Egalitarian?
- It is if p (No Award) $=p$ (No Award |Egalitarian)
- $\mathrm{p}($ No Award $)=\frac{17}{48}=.35$
- p (No Award \mid Egalitarian $)=\frac{15}{28}=.54$
- No, No Award is not independent of Egalitarian because $.35 \neq .54$

More About Independence

\bigcirc Independence is $p(A)=p(A \mid B)$ or $p(B)=p(B \mid A)$:

- A is independent of B if $p(A)=p(A \mid B)$ or if $p(B)=p(B \mid A)$
- Examples:
- If $p(A)=.3$ and $p(A \mid B)=.4, A$ and B are not independent because $.3 \neq .4$
- Given: $p(A)=.1, p(B)=.2, p(A \mid B)=.3$, and $p(B \mid A)=.4$. Is A independent of B ? Explain
No, A and B are not independent because $.1 \neq 3$ (or $.2 \neq 4$)
- Given: $p(A)=.1, p(B)=.2, p(A \mid B)=.1$, and $p(B \mid A)=.2$. Is A independent of B? Explain
Yes, A and B are independent because $.1=.1$ (or . $2=.2$)
- Given: $p(A)=.47, p(B)=.34$, and $p(B \mid A)=.49$. Which of these is the reason that A is not independent of B ?
$.47 \neq .34, .47 \neq .49, .34 \neq .49$

Answer: . 34ㅋ. 49

More About Independence

	Before Dinner	After Dinner
Dessert	34	21
No Dessert	18	31
Totals	52	52

- People in a restaurant were asked before and after their meal if they thought they would like a dessert. Is Dessert independent of Before?
- p (Dessert $)=\frac{55}{104}=.53$ and $p($ Dessert \mid Before $)=\frac{34}{52}=.65$
- No, Dessert is not independent of Before because . $53 \neq .65$,
- OR p (Before) $=\frac{52}{104}=.50$ and p (Before |Dessert) $=\frac{34}{55}=.62$
- No, Dessert is not independent of Before because . $50 \neq .62$
- Which two probabilities would you have to examine to determine if No Dessert is independent of After?
- One way: see if p(No Dessert) equals p(No Dessert|After)
- Or, see if p(After) equals p(After|No Dessert)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

More About Multiplication Rule

- Multiplication (And) Rule: $p(A$ and $B)=p(A) p(B \mid A)=$ $p(B) p(A \mid B)$
- This is the product of two probabilities: one about A, one about B,
one a marginal probability, one a conditional probability
- Other examples.
- $p(A)=.2, p(B)=.6, p(A \mid B)=.3, p(A$ and $B)=$
$p(B) p(A \mid B)=(.6)(.3)=.18$
- $p(A)=.5, p(B)=.1, p(B \mid A)=.2, p(A$ and $B)$ $=p(A) p(B \mid A)=(.5)(.2)=.10$
- If all four probabilities are given, you can do the problem two ways and you should get the same answer: $p(A)=.2, p(B)=.4$, $\mathrm{p}(A \mid B)=.3, p(B \mid A)=.6$,
- $p(A$ and $B)=p(A) p(B \mid A)=(.2)(.6)=.12$
$\cdot p(A$ and $B)=p(B) p(A \mid B)=(.4)(.3)=.12$

- The third of the Big 3: Addition (Or) Rule: $\mathrm{p}(\mathrm{A}$ or B$)=$ $p(A)+p(B)-p(A$ and $B)$
- This is the most complicated of the Big 3 because it uses the Multiplication Rule to get its answer
- Compute p(Award or Authoritarian)
$\begin{aligned} & \mathrm{p}(\text { (Award and Authoritarian) })= \\ & \mathrm{p}(\text { Award }) * \mathrm{p}(\text { Authoritarian } \mid \text { Award })\end{aligned}=\frac{31}{48} * \frac{18}{31}=\frac{18}{48}$
p(Award or Authoritarian) $=$
 $\frac{31}{48}+\frac{20}{48} \frac{18}{48}=\frac{33}{48}=.69$
- Compute ${ }^{48}$ (Award or Egalitarian)
${ }_{11}^{2}\left(\right.$ Award ${ }^{13}=13$ and Egalitarian $)=p($ Award $) * p($ Egalitarian \mid Award $)=$
$-{ }^{48}=\frac{31}{3}=\frac{18}{48}$
p
galitarian)=
$\mathrm{p}_{1}($ Award $)+{ }_{48}($ Egalitarian $)$-p(Award and Egalitarian) $=$
$\frac{1}{48}+\frac{2813}{48}=\frac{48}{48}=.96$

More About the Addition Rule

- Addition (Or) Rule: $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$
- Note that you add together two marginal probabilities and subtract off a joint (And) probability
- Other examples: find $p(A$ or $B)$
- $\mathrm{p}(\mathrm{A})=.2, \mathrm{p}(\mathrm{B})=.6, \mathrm{p}(\mathrm{A} \mid \mathrm{B})=.3$
- First, compute $p(A$ and $B): p(A$ and $B)=p(B) p(A \mid B)=(.6)(.3)=.18$
- Now, compute $p(A$ or $B): p(A$ or $B)=p(A)+p(B)-p(A$ and $B)=$. $2+.6-.18=.62$
- $\mathrm{p}(\mathrm{A})=.5, \mathrm{p}(\mathrm{B})=.1, \mathrm{p}(\mathrm{B} \mid \mathrm{A})=.2$
- First, compute $p(A$ and $B): p(A$ and $B)=p(A) p(B \mid A)=(.5)(.2)=.10$
- Now, compute $p(A$ or $B): p(A$ or $B)=p(A)+p(B)-p(A$ and $B)=$ $.5+.1-.10=.50$

Probability: Review

- Probability is defined as relative frequency of occurrence - Basic definitions:
- Sample space: all possible outcomes of an experiment
- Elementary event: a single member of the sample space
- Event: any collection of elementary events
- Probability:
- $\mathrm{p}($ elementary event $)=\frac{1}{\text { Total number }}$
- $\mathrm{p}($ event $)=\frac{\text { Number in the event }}{\text { Total number }}$
- Conditional probability:
$\cdot \mathrm{p}(\mathrm{A} \mid \mathrm{B})=\frac{\text { Number in }(A \text { and } B)}{\text { Number in } B}$
- The probability of A in the redefined (reduced) sample space of B

Probability Review:
The Big Three (+1)

- 1. Independence: events A and B are independent if $p(A)=p(A \mid B)$
The A probability is not changed by reducing the sample space to B OR the occurrence of one event does not change the probability of occurrence of another event
- 2. Multiplication (And) Rule: the probability of a joint occurrence
- $p(A$ and $B)=p(A) p(B \mid A)=p(A \mid B) p(B)$
- Mutually exclusive:
- Events A and B do not have any elementary events in common
- Events A and B cannot occur simultaneously
- $p(A$ and $B)=0$
- 3. Addition (Or) Rule: include all cases in one event or the other $p(A$ or $B)=p(A)+p(B)-p(A$ and $B)$
\qquad
\qquad
\qquad
\qquad
\qquad

