

z Scores

- Characteristics:

- The mean of a distribution of z scores is zero
- The variance of a distribution of z scores is one
- The shape of a distribution of z scores is reflective, the shape is the same as the shape of the distribution of the original \qquad
- Example: Compute z
- Sample, if $X=34$, with $\bar{X}=40$, and $\mathbf{s}^{2}=9$, then \qquad $\mathrm{z}=(\mathrm{X}-\bar{X})=(34-40)=\underline{-6}=-2$
- Population, if $X=10, \mu=8$, and $\sigma^{2}=16$, then $z=(X-\mu) / \sigma=(10-8) / 4=2 / 4=.5$

The Purpose of z Scores

- z scores allow us to identify the relative position of a particular score within a distribution of scores
-This is a very clear way of indicating whether a score is above or below the mean as
falls away from the mean (in terms of standard deviations)
- If a z score...

Has a value of 0 , then it is equal to the group mean
Is positive, then it is above the group mean
Is negative, then it is below the group mean
Is equal to +1 , then it is 1 standard deviation above the mean

- Is equal to +2 , then it is 2 standard deviations above the mean
- Is equal to -1 , then it is 1 standard deviation below the mean
- Is equal to -2 , then it is 2 standard deviations below the mean
- z scores can help us understand..

How typical a particular score is within a set of scores
If data are normally distributed, approximately 95% of the data should have z scores
between -2 and +2
z scores can help us compare...
. Individual scores from different sets of data
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: A Tale of Two Classes

\bigcirc Imagine that your nephew is taking a high school chemistry class and is very happy about his 85%...but he is very unhappy about his 85% in his history course

- The reason for his different responses may be due, at least in part, to his relative standing in these courses
- He may be happy about his 85% in chemistry because the grades are generally lower (giving him a z score of +2)...but the grades may be higher in his history course (giving him a z score of -1)

Normal Distributions

- Family of theoretical distributions \qquad
- There are many different normal distributions
- Normal distributions differ according to their mean and standard deviation
- Characteristics: \qquad
- Symmetric, continuous, unimodal
- Bell-shaped
- Scores range from $-\infty$ to $+\infty$
- Mean, median, and mode are all the same value
- Each distribution has two parameters, μ and σ^{2}
\qquad
\qquad

Normal Distributions

๑ Examples:

- IQ is normally distributed with $\mu=100$ and $\sigma^{2}=225$
- Height of American males is normally distributed with $\mu=69$ and $\sigma^{2}=9$
\bigcirc The standard normal (or unit normal)
distribution has $\mu=0$ and $\sigma^{2}=1$
- This is why we are talking about z scores and normal distributions together
- We can transform any normal distribution to the standard normal distribution by computing z scores
- The resulting distribution of z scores will have a shape that is normal... WHY?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Distribution

- We use this distribution to get probabilities \qquad associated with a z score (probability, proportion, and area under the curve are synonymous)
- This is going to serve as the basis for determining statistical significance later in the semester
- Example:
- If Joe is 73 inches tall, what is the probability that any randomly selected man will be his height or taller?
- For height, $\mu=69$ and $\sigma^{2}=9$, so $z=(X-\mu) / \sigma=(73-69) / 3=4 / 3=1.33$
- From z distribution table, $\mathrm{p}(\mathrm{z} \geq 1.33)=.0918$

Standard Normal Distribution

- There are two key facts:

Total area equals one

- Symmetry
- Steps
- Draw a picture with zero and z
- Locate desired area: is it small or large?
- Is area in tail or middle?
- Use symmetry and/or total area=1
- Example: $p(z \geq 2)$
- Picture
- Tail
- Small
$-\mathrm{p}(\mathrm{z} \geq 2)=.0228$ (found in a z table)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Distribution

- More examples: if z is normal and
$p(z \geq 1.645)=.05$
- Compute p(z<l.645)
- We want all the area to the left of 1.645 (a large area)

- The area is in the middle and left tail
- Use total area=l to get $\mathrm{p}(\mathrm{z} \leq 1.645)=1-.05=.95$

Standard Normal Distribution

- More examples: if z is normal and
$p(z \geq 1.645)=.05$
\odot Compute $p(z \leq-1.645)$
- We want all the area to the left of -1.645 (a small area)
- The area is in the left tail

\qquad
\qquad
\qquad
\qquad
- Use symmetry to get $\mathrm{p}(\mathrm{z} \leq-1.645)=.05$ \qquad
\qquad

Standard Normal Distribution

\bigcirc More examples: if z is normal and $p(z \geq 1.645)=.05$
\odot Compute $p(z \geq-1.645)$

- We want all the area to the right of -1.645 (a large area)
- The area is in the middle and right tail
- Use symmetry and total area=l to get $p(z \geq-1.645)=.95$

Standard Normal Distribution

\odot More examples: if z is normal and $p(z \geq 1.645)=.05$

- Compute p(-1.645 $\mathrm{z} \leq 1.645$)
- We want all the area between - 1.645 and 1.645, a large area
- The area is in the middle

- Use symmetry and total area $=1$ to get $\mathrm{p}(-1.645 \leq \mathrm{z} \leq 1.645)=$ $1-2(.05)=1-.10=.90$

Standard Normal Distribution

\bigcirc More examples: if z is
normal and $p(z \geq 1.1)=.1357$

- Compute $\mathrm{p}(\mathrm{z} \leq 1.1)$
- We want all the area to the left of 1.1 (a large area)
- The area is in the middle and left tail
- Use total area=1 to get

\qquad
\qquad
\qquad $p(z \leq 1.1)=1-.1357=.8643$ \qquad
\qquad

Standard Normal Distribution

- More examples: if z is normal and $p(z \geq 1.1)=.1357$
- Compute p(z<-1.1)
- We want all the area to the left of -1.1 (a small area)
-The area is in the left tail
- Use symmetry to get $\mathrm{p}(\mathrm{z} \leq-1.1)=.1357$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Standard Normal Distribution

\odot More examples: if z is normal and $p(z \geq 1.1)=.1357$

- Compute p(z>-1.1)
- Want all the area to the right of -1.1 (a large area)
- The area is in the middle and right tail
- Use symmetry and total
 area $=1$ to get $p(z>-1.1)=$.8643

Standard Normal Distribution

\bigcirc More examples: if z is normal and $p(z \geq 1.1)=.1357$

- Compute $p(-1.1 \leq z \leq 1.1)$
- Want all the area between -1.1 and 1.1 (a large area) - The area is in the middle
- Use symmetry and total
 $\mathrm{p}(-1.1 \leq z \leq 1.1)=$ $1-2(.1357)=.7286$

