## Summarizing Data

## Description With Statistics

- Aspects or characteristics of data that we can describe are
- Central Tendency (or Middle)
- Dispersion (or Spread)
- Skewness
- Kurtosis
- Statistics that measure/describe central tendency are mean, median, and mode
- Statistics that measure/describe dispersion are range, variance, and standard deviation


## Description With Statistics

- Central Tendency = middle, location, center
- Measures of central tendency are mean, median, and mode (keywords)
- Dispersion = spread, variability
- Measures of dispersion are range, variance, and standard deviation (keywords)
- Skewness $=$ departure from symmetry
- Positive skewness = tail of distribution (i.e., extreme scores) in positive direction
- Negative skewness = tail of distribution (i.e., extreme scores) in negative direction
- Kurtosis $=$ peakedness relative to normal curve



## Describing Central Tendency

- "Central Tendency" is the aspect of data we want to describe
- We describe/measure the central tendency of data in a sample with the statistics: $\qquad$
- Mean
- Median
- Mode
- We describe/measure the central tendency of data in a population with the parameter $\mu$ ('mu'); we usually do not know $\mu$, so we estimate it with $\bar{X}$


## Sample Mean

- The sample mean is the sum of the scores divided by the number of scores and it is symbolized by $\bar{X}$

$$
\bar{X}=\frac{\Sigma \mathrm{X}}{\mathrm{~N}}
$$

- Example: 4, 1, 7
- $\mathrm{N}=3$
- $\mathrm{\Sigma X=} 12$
- $\bar{X}=\Sigma \mathrm{X} / \mathrm{N}=12 / 3=4$
- Characteristics:
- $X$ is the balance point
- $\Sigma(\mathrm{X}-\bar{X})=0$
- $\bar{X}$ Minimizes $\Sigma(\mathrm{X}-\bar{X})^{2}$ (Least Squares criterion)
- Minimizes standard deviation
- $\bar{X}$ is pulled in the direction of extreme scores

| Sample Mean |
| :---: |
| - What is the mean for the following data: 4, 1, 7, 6 |
| - $\mathrm{N}=4$ <br> - $\Sigma \mathrm{X}=18$ <br> $\bigcirc \bar{X}=\Sigma \mathrm{X} / \mathrm{N}=18 / 4=4.5$ |

## Sample Median

- The median is the middle of the ordered scores and it is symbolized as $\mathrm{X}_{50}$
- Median position (as distinct from the median itself) is $(\mathrm{N}+1) / 2$ and is used to find the median $\qquad$
$\odot$ Find the median of these scores: $4,1,7$
- $\mathrm{N}=3$
- Median position is $(3+1) / 2=4 / 2=2$ $\qquad$
- Place the scores in order: $1,4,7$
- $\mathrm{X}_{50}$ is the score in position/rank 2
- So $X_{50}=4$


## Sample Median

๑ Another example: 4, 1, 7, 6

- $\mathrm{N}=4$
- Median position is $(\mathrm{N}+1) / 2=(4+1) / 2=5 / 2=2.5$
- Place the scores in order: $1,4,6,7$
- $\mathrm{X}_{50}$ is the score in position/rank 2.5 $\qquad$
- So $X_{50}=(4+6) / 2=10 / 2=5$ $\qquad$
- Depends on only one or two middle values
$\qquad$
- Minimizes $\Sigma\left|\mathrm{X}-\mathrm{X}_{50}\right|$
- Minimizes absolute deviation


## Sample Mode

- The mode is the most frequent score $\qquad$
- Examples:
- 1147
- the mode is 1 $\qquad$
- 11477
- there are two modes: 1 and 7
- 147
there is no mode
- Characteristics:
- Has problems: more than one, or none; maybe not in the middle; little info regarding the data
- Best for qualitative data (e.g., gender)
- If it exists, it is always one of the scores
- It is rarely used

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Describing the Dispersion of Data

- We describe/measure the dispersion of data in a sample with the statistics:
- Range = high score-low score
- Sample variance, $\mathbf{s}^{* 2}$
- Sample standard deviation, s*
- Unbiased variance estimate, $\mathrm{s}^{2}$
- Standard deviation, s $\qquad$
- We describe/measure the dispersion of data in a population with the parameter $\sigma$ ('sigma') or $\sigma^{2}$; we usually do not know $\sigma$ or $\sigma^{2}$, so we estimate them with one of the statistics
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
- $\Sigma \mathrm{X}^{2}=1^{2}+2^{2}+3^{2}=1+4+9=14, \Sigma \mathrm{X}=6, \mathrm{~N}=3$
(14)-(6) ${ }^{2} / 3^{2}=[42-36] / 9=6 / 9=2 / 3=.6667$
- This gives you the AVERAGE SQUARED DEVIATION

AROUND THE MEAN
$\qquad$
$\qquad$

Sample Standard Deviation (s*)

- Formula: $\mathrm{s}^{*}=\sqrt{s * 2}$
- Example: 123
- $\mathrm{N}=3, \bar{X}=\Sigma \mathrm{X} / \mathrm{N}=6 / 3=2$
- $\Sigma(\mathrm{X}-\overline{\mathrm{X}})^{2}=(1-2)^{2}+(2-2)^{2}+(3-2)^{2}=1+0+1=2$
- $\mathrm{s}^{* 2}=2 / 3=.6667$
$\cdot \mathrm{s}^{*}=\sqrt{.6667}=.8165$
$\bigcirc \mathbf{s}^{*}$ is in original units of measure
$\bigcirc \mathbf{s}^{*}$ is the typical distance of scores from the mean (i.e., the average deviation of scores from the mean)

Unbiased Variance Estimate ( $\mathbf{s}^{2}$ )

- Definitional formula: $\mathrm{s}^{2}=\frac{\Sigma(\mathrm{X}-\bar{X})^{2}}{(\mathrm{~N}-1)}$
- Example: 123
- $\mathrm{N}=3, \bar{X}=\Sigma \mathrm{X} / \mathrm{N}=6 / 3=2$
- $\Sigma(\mathrm{X}-\bar{X})^{2}=(1-2)^{2}+(2-2)^{2}+(3-2)^{2}=1+0+1=2$
- $\mathrm{s}^{2}=2 / 2=1.0$
- Computational formula:
$\mathrm{s}^{2}=\left[\mathrm{NLX}^{2}-(\mathrm{IX})^{2}\right]$
[ $\mathrm{N}(\mathrm{N}-\mathrm{l})$ ]
- $\Sigma \mathrm{X}^{2}=1^{2}+2^{2}+3^{2}=1+4+9=14, \Sigma \mathrm{X}=6, \mathrm{~N}=3$
- $\mathrm{s}^{2}=\left[3(14)-(6)^{2}\right] /[3(2)]=[42-36] / 6=6 / 6=1.0$
$\odot s^{2}$ is in squared units of measure
$\odot$ The only difference between $s^{* 2}$ and $s^{2}$ is the "-1" in the denominator of the formula for $\mathrm{s}^{2}$


## Standard Deviation (s)

- Formula: $s=\sqrt{s^{2}}$
- Example: 123
- $\mathrm{N}=3, \bar{X}=\Sigma \mathrm{X} / \mathrm{N}=6 / 3=2$
- $\Sigma(\mathrm{X}-\bar{X})^{2}=(1-2)^{2}+(2-2)^{2}+(3-2)^{2}=1+0+1=2$
- $\mathrm{s}^{2}=1.0$
- $\mathrm{s}=\sqrt{1}=1.0$
$\bigcirc s$ is in original units of measure


## Why do we care about measures of

 central tendency and dispersion?- Once we have collected data, the first step is usually to organize the information using simple descriptive statistics (e.g., measures of central tendency and dispersion)
- Measures of central tendency are AVERAGES
- Mean, median, and mode are different ways of finding the one value that best represents all of your data
- Measures of dispersion tell us how much scores DIFFER FROM ONE ANOTHER


| Why do we care about measures of |
| :--- |
| central tendency and dispersion? |
| o Once we have collected data, the first step is |
| usually to organize the information using |
| simple descriptive statistics (e.g., measures |
| of central tendency and dispersion) |
| OMeasures of central tendency are |
| AVERAGES |
| - Mean, median, and mode are different ways of |
| finding the one value that best represents all of your |
| data |
| OMeasures of dispersion tell us how much |
| scores DIFFER FROM ONE ANOTHER |

$\qquad$

## Why do we have two formulae for

 variance and standard deviation?- Remember that our statistics are ESTIMATES of the parameters in the population
- When we use N as the denominator (as in $\mathrm{s}^{* 2} \& \mathrm{~s}^{*}$ ), we produce a biased estimate (it is too small) $\qquad$ - We are trying to be good scientists so we will be conservative and use the unbiased estimate of the variance ( $\mathbf{s}^{2}$ ) and its associated standard deviation (s)
- We will address the idea of 'bias' later in the semester and this will be our introduction to the concept


## Skewness

Positive Skewness

## Negative Skewness



## Common Data Transformations


$\qquad$
$\qquad$

Logarithmic Transformation $\qquad$


Substantial Positive
Skew
$\qquad$
$\qquad$

SPSS Syntax
compute new_examl $=\lg 10($ examl $)$.
execute.
If zero is a value, then use
compute new_examl $=\lg 100$ (examl + constant).
--"constant" is a numeric value added to each score so that the lowest value is 1 $\qquad$




## SPSS Syntax

compute new_examl=lg10(constant-examl)
execute.

$$
\begin{aligned}
& \text { subtracted so that the smallest score is } 1 \text { (usually equal to } \\
& \text { the largest score }+1 \text { ) }
\end{aligned}
$$

$\qquad$

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

|  | SPSS Basics |
| :---: | :---: |
| Three windows |  |
| - Data editor (where we enter data) |  |
|  |  |
|  |  |
|  | - output/results of our analyses) |
|  |  |
|  | - Graphical user interface (point-and |
|  | - Very easy to use |
|  | $\xrightarrow{- \text { Preferred for simple operations }}$ |
|  |  |
|  | - Takes a bit longer to learn |
|  | - More flexible |
|  | - Preferred for creating scores in a data fil |
|  |  |

## Reading Assignment

$\qquad$

Read the following chapters in Aspelmeier and Pierce for $\qquad$ the next class session:
-Chapter l: Introduction to SPSS: A user-friendly approach
-Chapter 2: Basic operations
-Chapter 3: Finding sums $\qquad$
-Chapter 4: Frequency distributions and charts $\qquad$
$\qquad$
$\qquad$

