Two-Way ANOVA

PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1

Goals

Rationale for Factorial ANOVA
 Partitioning Variance
 Interaction Effects

- Interaction Graphs
- Interpretation

What is Two-Way ANOVA?

 Two Factors (i.e., variables that classify participants into groups)

- Two-way = 2 factors
- Three-way = 3 factors
- For now, we are going to focus on situations in which there are different participants in *all* conditions
 This should be used with between-subjects designs
- This should be used with between-subjects designs
 More than one factor is known as a "factorial design"
- Later, we will talk about repeated-measures designs (same participants in all conditions) and mixed designs (blend of between-subjects and withinsubjects conditions)

Two-Way ANOVA: Introduction

- ${\scriptstyle \textcircled{\sc only}}$ The two-way ANOVA uses two factors, variables that combine to form the groups
- The factors may or may not be independent variables
 The groups formed by combining levels/values of the factors are called cells, and the means of the observations in these cells are called "cell means"
- We have three F-tests in a two-way ANOVA, one for each of the two factors by themselves, and one for the interaction of the two factors

Two-Way ANOVA: Logic

- The logic of the two-way ANOVA is the same as that for the one-way:
 - For each of the three F-tests, you will form an F-ratio based on two
 - variances
 - + For each F, if $H_{\rm o}$ is true, both variances should be equal and the average F will be about 1
- ${\scriptstyle \odot}$ For each F, if H_0 is false:
 - We expect numerator > denominator
 - We expect average F > 1
 - And we reject H_o if $F \ge F_{crit}$
- ${\scriptstyle \odot}$ The difference is that the two-way ANOVA is more
- complex because there are three F-ratios • The effects of the factors are called main effects (and the F for the
 - interaction)

Benefit of Factorial Designs

- \odot We can look at how variables <u>interact</u>
- \odot Interactions
 - Show how the effects of one factor might depend on the effects of another factor
 - · Interactions indicate "moderation" effects
- - There may be an interaction between hangover and lecture topic on sleeping during class
 - A hangover might have more effect on sleepiness during a stats lecture than during a lecture about sexual behavior

An Example

- The effects of Alcohol and Sex on "the beer-goggles effect" conducted by an anthropologist
 - Phenomenon in which drinking alcohol increases the perceived attractiveness of others in the social environment (summed up by the phrase "There are no ugly women at closing time")
- Factors
 - Factor A (Sex): Male, Female
 - Factor B (Alcohol): None, 2 pints of lager, 4 pints of lager
- Outcome variable was an objective measure of the attractiveness of the partner selected at the end of the evening
 - Took a photo of the person the participant was speaking to at a designated time and had independent judges rate the attractiveness of the person

Two-Way ANOVA: Logic

Notation:

- n = number of observations per cell
 J = number of levels of Factor A
 K = number of levels of Factor B

- N = total number of participants (nJK)
 Each of the three F's is formed as a ratio of two sample variances: the numerator will be the MS for the effect tested (MS_A, MS_B, or MS_{AxB}), the denominator will be MS_W
 Hypotheses:
- Hypotheses: For A (e.g., Sex) $H_0; \mu_1 = \mu_0 = ... = \mu_1$ $H_1; any differences in <math>\mu_1 s$ For B (e.g., Alcohol) $H_0; \mu_1 = \mu_2 = ... = \mu_R$ $H_1; any differences in <math>\mu_k s$ For interaction (not easily expressed in terms of μs) $H_0;$ no interaction effect H.: some interaction effect
- H₁: some interaction effect

Alcohol	None		2 Pints		4 Pints	
Sex	Female	Male	Female	Male	Female	Male
	65	50	70	45	55	30
	50	55	65	60	65	30
	70	80	60	85	70	30
	45	65	70	65	55	55
	55	70	65	70	55	35
	30	75	60	70	60	20
	70	75	60	80	50	45
	55	65	50	60	50	40
Total	485	535	500	535	460	285
Mean	60.625	66.875	62.50	66.875	57.50	35.625
Variance	24.55	106.70	42.86	156.70	50.00	117.41

Degrees of Freedom for Two-Way ANOVA		
⊚ J = number of levels of Factor A		
⊛ K = number of levels of Factor B		
$\odot df_A = J - 1 = 2 - 1 = 1$		
$\odot df_{B} = K - 1 = 3 - 1 = 2$		
$\odot df_{Within} = JK(n-1) = 6*7 = 42$		

Mean Squares for Two-Way ANOV	ł
• $\mathbf{MS}_{A \times B} = \frac{SS_{A \times B}}{df_{A \times B}} = \frac{1978.125}{2} = 989.062$	

Г

F-Ratios for Two-Way ANOVA
• $\mathbf{F}_{\mathbf{A}} = \frac{\mathbf{MS}_{\mathbf{A}}}{\mathbf{MS}_{\text{Within}}} = \frac{168.75}{83.036} = 2.032$
$\bullet \mathbf{F}_{\mathbf{A} \times \mathbf{B}} = \frac{\mathbf{MS}_{\mathbf{A} \times \mathbf{B}}}{\mathbf{MS}_{\text{Within}}} = \frac{989.062}{83.036} = 11.911$

Interpreting the Two-Way ANOVA Plot

- If the lines are not parallel, then an interaction is indicated (may or may not be significant depending on chance variability)
- 2. If the midpoints of the lines are not equal, then a main effect of Factor A is indicated
- 3. If the visual average (middle) of the points (cell means) above each level of Factor B are not equal, then a main effect of Factor B is indicated

Two-Way ANOVA: Interaction Symptoms of arthritis frequently include stiffness and joint pain

- A new drug helps only women who experience stiffness, not women with joint pain nor men with either symptom
- Using a rating of the drug that increases as effectiveness of the drug increases, these results would look like this:
 - Gender (M or F) is interacting with symptom (Stiffness or Joint Pain)

