
\qquad

Goals
oRationale for Factorial ANOVA
oPartitioning Variance
oInteraction Effects
- Interaction Graphs
- Interpretation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is Two-Way ANOVA?

- Two Factors (i.e., variables that classify participants \qquad into groups)
- Two-way $=2$ factors
- Three-way $=3$ factors
- For now, we are going to focus on situations in which there are different participants in all conditions
- This should be used with between-subjects designs
\bigcirc More than one factor is known as a "factorial design" - Later, we will talk about repeated-measures designs
\qquad
\qquad (same participants in all conditions) and mixed designs (blend of between-subjects and withinsubjects conditions)

Two-Way ANOVA: Introduction

- The two-way ANOVA uses two factors, variables that combine to form the groups
. The factors may or may not be independent variables
- The groups formed by combining levels/values of the factors are called cells, and the means of the observations in these cells are called "cell means"
- We have three F-tests in a two-way ANOVA, one for each of the two factors by themselves, and one for the interaction of the two factors

Two-Way ANOVA: Logic

- The logic of the two-way ANOVA is the same as that for the one-way:
- For each of the three F-tests, you will form an F-ratio based on two variances
- For each F, if H_{o} is true, both variances should be equal and the average F will be about 1
- For each F , if H_{0} is false:
- We expect numerator $>$ denominator
- We expect average $\mathrm{F}>1$
- And we reject H_{0} if $\mathrm{F} \geq \mathrm{F}_{\text {crit }}$
- The difference is that the two-way ANOVA is more complex because there are three F-ratios
- The effects of the factors are called main effects (and the F for the interaction)

	Two-way ANOVA F-tests
1. Situation/hypotheses	Two factors, J levels of A, K levels of B, n observations per cell For A, $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{J}}$ For $\mathrm{B}, \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{K}}$ For $\mathrm{AxB}, \mathrm{H}_{0}$: no interaction effect
2. Test statistic	
3 .Distribution Similar to One-Way	$\begin{aligned} & \mathrm{F}_{\mathrm{J}-1, \mathrm{JK}(\mathrm{n}-1)} \\ & \mathrm{F}_{\mathrm{K}-1, \mathrm{JK}(\mathrm{n}-1)} \end{aligned}$ $F_{(J-1)(K-1), J K(n-1)}$
4. Assumptions ANOVA	1. Populations are normal 2. Equal population variances for each cell 3. Observations are independent

Benefit of Factorial Designs

\qquad

- We can look at how variables interact \qquad - Interactions
- Show how the effects of one factor might depend on the \qquad effects of another factor
\qquad
- Interactions are often more interesting than main effects - Example
- There may be an interaction between hangover and lecture topic on sleeping during class \qquad A hangover might have more effect on sleepiness during a stats lecture than during a lecture about sexual behavior

An Example

- The effects of Alcohol and Sex on "the beer-goggles effect" conducted by an anthropologist
\qquad
- Phenomenon in which drinking alcohol increases the perceived attractiveness of others in the social environment (summed up by the attractiveness of others in the social environment (s \qquad
- Factors
- Factor A (Sex): Male, Female \qquad
- Factor B (Alcohol): None, 2 pints of lager, 4 pints of lager
- Outcome variable was an objective measure of the attractiveness of the partner selected at the end of the evening
- Took a photo of the person the participant was speaking to at a designated time and had independent judges rate the attractiveness of the person

Two-Way ANOVA: Logic

- Notation:
- $\mathrm{n}=$ number of observations per cell
- $\mathrm{J}=$ number of levels of Factor A
- $K=$ number of levels of Factor B
- $N=$ total number of participants ($n J K$)
- Each of the three F's is formed as a ratio of two sample variances: the numerator will be the MS for the effect tested $\left(\mathrm{MS}_{A}, \mathrm{MS}_{B}\right.$, or $\left.\mathrm{MS}_{\mathrm{AxB}}\right)$, the denominator will be MS_{w}
- Hypotheses:
- For A (e.g., Sex)
$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu$
H_{1} : any differences in $\mu_{\mathrm{j}} \mathbf{S}$
- For B (e.g., Alcohol)
- $\mathrm{H}_{\mathrm{o}}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{K}}$
H_{1} : any differences in $\mu_{\mathrm{k}} \mathrm{S}$
- For interaction (not easily expressed in terms of $\mu \mathrm{s}$)
- H_{0} : no interaction effect
H_{1} : some interaction effect

Alcohol	None		2 Pints		4 Pints	
Sex	Female	Male	Female	Male	Female	Male
	65	50	70	45	55	30
	50	55	65	60	65	30
	70	80	60	85	70	30
	45	65	70	65	55	55
	55	70	65	70	55	35
	30	75	60	70	60	20
	70	75	60	80	50	45
Total	485	535	500	535	460	285
Mean	60.625	66.875	62.50	66.875	57.50	35.625
Variance	$\mathbf{2 4 . 5 5}$	$\mathbf{1 0 6 . 7 0}$	$\mathbf{4 2 . 8 6}$	$\mathbf{1 5 6 . 7 0}$	$\mathbf{5 0 . 0 0}$	$\mathbf{1 1 7 . 4 1}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

variability that is explained by Factor B (Alcohol)

B_{1} : None		$\mathrm{B}_{2}: 2$ Pints		B_{3} : 4 Pints	
65	50	70	45	55	30
70	55	65	60	65	30
60	80	60	85	70	30
60	65	70	65	55	55
60	70	65	70	55	35
55	75	60	70	60	20
60	75	60	80	50	45
55	65	50	60	50	40
$\begin{gathered} \text { Mean None }= \\ 63.75 \end{gathered}$		$\begin{gathered} \text { Mean } 2 \text { Pints }= \\ 64.6875 \end{gathered}$		Mea	nts =

Step 2b: Calculate SS_{B}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}=S S_{\text {Between }}-S S_{A}-S S_{B}
$$

$=5479.167-168.75-3332.292$
This is the amount of variability that is explained by the interaction of Factor A (Sex) and Factor B (Alcohol)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Degrees of Freedom for Two-Way ANOVA

$\odot \mathrm{J}=$ number of levels of Factor A \qquad
$\odot \mathrm{K}=$ number of levels of Factor B \qquad
$\odot \mathrm{df}_{\mathrm{A}}=\mathrm{J}-\mathrm{l}=2-\mathrm{l}=\mathrm{l}$
$\odot \mathrm{df}_{\mathrm{B}}=\mathrm{K}-\mathrm{l}=3-\mathrm{l}=2$
$\odot \operatorname{df}_{\mathrm{A} \times \mathrm{B}}=(\mathrm{J}-\mathrm{l}) *(\mathrm{~K}-\mathrm{l})=(2-\mathrm{l}) *(3-1)=1 * 2=2$
$\odot \mathrm{df}_{\text {Within }}=\mathrm{JK}(\mathrm{n}-1)=6 * 7=42$

Mean Squares for Two-Way ANOVA
$\bigcirc \mathrm{MS}_{\mathrm{A}}=\frac{\mathrm{SS}_{\mathrm{A}}}{\mathrm{df}_{\mathrm{A}}}=\frac{168.75}{1}=168.75$
$\odot \mathrm{MS}_{\mathrm{B}}=\frac{\mathrm{SS}_{\mathrm{B}}}{\mathrm{df}_{\mathrm{B}}}=\frac{3332.292}{2}=1666.146$
$\odot \mathrm{MS}_{\mathrm{A} \times \mathrm{B}}=\frac{\mathrm{SS}_{\mathrm{A} \times \mathrm{B}}}{\mathrm{df}_{\mathrm{A} \times \mathrm{B}}}=\frac{1978.125}{2}=989.062$
$\odot \mathrm{MS}_{\text {Within }}=\frac{\mathrm{SS}_{\text {Within }}}{\mathrm{df}_{\text {Within }}}=\frac{3487.52}{42}=83.036$

F-Ratios for Two-Way ANOVA

$\odot \mathrm{F}_{\mathrm{A}}=\frac{\mathrm{MS}_{\mathrm{A}}}{\mathrm{MS}_{\text {within }}}=\frac{168.75}{83.036}=2.032$
$\odot F_{B}=\frac{\mathrm{MS}_{B}}{\mathrm{MS}_{\text {Within }}}=\frac{1666.146}{83.036}=20.065$
$\odot \mathrm{F}_{\mathrm{A} \times \mathrm{B}}=\frac{\mathrm{MS}_{\mathrm{A} \times \mathrm{B}}}{\mathrm{MS} \text { within }}=\frac{989.062}{83.036}=11.911$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation: Main Effect of Sex

\qquad
\qquad
\qquad
\qquad

There was not a significant main effect of sex for the attractiveness of selected mates, $F(1,42)=2.03, p=.161$

\qquad

1. If the lines are not parallel, then an interaction is indicated (may or may not be significant depending on chance variability)
2. If the midpoints of the lines are not equal, then a main effect of Factor A is indicated
3. If the visual average (middle) of the points (cell means) above each level of Factor B are not equal, then a main effect of Factor B is indicated
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two-Way ANOVA: Interaction

\qquad

- Symptoms of arthritis frequently include stiffness and joint pain
- A new drug helps only women who experience stiffness, not women with joint pain nor men with either symptom \odot Using a rating of the drug that increases as effectiveness of the drug increases, these results would look like this: \qquad
- Gender (M or F) is interacting with symptom
(Stiffness or Joint Pain)

\qquad
\qquad
\qquad

Two-Way ANOVA: Interaction

- Plots of cell means showing the three F-tests (assumes that $M S_{W}$ is small so any observed difference is significant).

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two-Way ANOVA: Interaction

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

