ANOVA Follow-Up Comparisons: Planned Contrasts, Multiple Comparison Procedures, and Trend Analyses

PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1

Comparing Groups in an ANOVA

If the ANOVA is significant, then it means that there is some difference, somewhere...but it does not tell you which means are different from each other

- ${\scriptstyle \odot}$ Two basic approaches for comparing cell means
 - <u>Planned contrasts</u> are done when you have specific hypotheses to test
 - Compare specific pairs means
 - <u>Multiple comparison procedures (post hoc</u> tests) are done when you do not have specific hypotheses
 - Compare all possible pairs of means

Why Use Follow-Up Tests?

- The F-ratio tells us only that the experiment was successful
 - i.e., group means were different
- It does not tell us specifically which group means differ from which
- We need additional tests to find out where the group differences lie

How?

Multiple t-tests

- We saw earlier that this is a bad idea
- Planned Contrasts
 - Hypothesis driven
 - Planned a priori
- Multiple Comparison Procedures (Post Hoc Tests)
 - Not Planned (no hypothesis)
 - ${\boldsymbol \cdot}$ Compare all pairs of means
- Trend Analysis

Planned Contrasts

- Basic Idea:
 - The variability explained by the Model (experimental manipulation, $SS_{\mbox{\tiny B}})$ is due to participants being assigned to different groups
 - This variability can be broken down further to test specific hypotheses about which groups might differ
 - We break down the variance according to hypotheses made a priori (before the experiment)
 - Separating the variance is similar to the idea of cutting up a cake

Rules When Choosing Contrasts

Independent

- contrasts must not interfere with each other (i.e., they must test unique hypotheses)
- Only 2 Chunks
 - Each contrast should compare only 2 chunks of variation
- ⊙ J-1
 - You should always end up with one less possible contrast than the number of groups

Generating Hypotheses

- <u>Example</u>: Testing the effects of Viagra on Libido using three groups:
 - Placebo (Sugar Pill)
 - Low Dose Viagra
 - High Dose Viagra
- Dependent Variable (DV) was an objective measure of Libido
- Intuitively, what might we expect to happen?

	Placebo	Low Dose	High Dose
	1 1000.00	2011 2050	
	3	5	7
	2	2	4
	1	4	5
	1	2	3
	4	3	6
Mean	2.20	3.20	5.00

How do we choose contrasts?

• Big Hint:

- In most experiments we usually have one or more control groups
- The logic of control groups dictates that we expect them to be different than the groups that we have manipulated
- The first contrast will almost always be to compare any control groups (chunk 1) with any experimental conditions (chunk 2)

Hypotheses

 ${\scriptstyle \odot}$ Hypothesis 1:

• People who take Viagra will have a higher libido than those who do not

• Hypothesis 2:

• People taking a high dose of Viagra will have a greater libido than those taking a low dose of Viagra

Coding Planned Contrasts: Rules

Rule 1

- Groups coded with positive weights compared to groups coded with negative weights
- \odot Rule 2
- The sum of weights for a comparison should be zero
- \odot Rule 3
- If a group is not involved in a comparison, assign it a weight of zero ${\ensuremath{\,\circ}}$ Rule 4
 - For a given contrast, the weights assigned to the group(s) in one chunk of variation should be equal to the number of groups in the opposite chunk of variation

Rule 5

 If a group is singled out in a comparison, then that group should not be used in any subsequent contrasts

Multiple Comparison Procedures: Introduction

 ${\scriptstyle \odot}$ If the ANOVA F rejects ${\rm H_o},$ it is favoring ${\rm H_1}...{\rm but}~{\rm H_1}$ merely says "any difference in the μ_i 's"

- · So the F does not tell you which groups have different means, it says "some difference, somewhere"
- As a result, F is usually not the only statistic that we need to understand a one-way design with more than two groups F is an "omnibus test"

• We need tests for the multiple differences that exist between the J means

- For example, which of the groups has the highest libido: High Dose group, Low Dose group, or Placebo group?
 The significant F test merely says there is some difference
- somewhere

Multiple Comparison Procedures: Introduction

- Multiple comparisons are the many mean differences the exist when you compare J means
- Pairwise comparisons are differences in means taken two at a time
 - For J means, there are $C = \frac{J * (J 1)}{2}$ pairwise comparisons
- The hypotheses for pairwise comparisons are
 - H_o:µ_j=µ_j,
 - H₁:μ_i≠μ_i,

Multiple Comparison Procedures: Introduction

• For the liar data, J = 3, so C = $\frac{J * (J - 1)}{2} = \frac{3 * 2}{2} = 3$

- $\boldsymbol{\cdot}$ There are three pairwise comparisons:
- High Dose vs. Low Dose
- High Dose vs. Placebo
- Low Dose vs. Placebo
- Error rate per comparison sets α '=.05 for each comparison, so the probability of a Type I error is about .15

Multiple Comparison Procedures: Error Rates

- Error rate per comparison sets α '=.05 for each comparison, so for 3 comparisons, α ' would approach .15 (rather than .05)
- It would be less than .15 because there is some overlap in the comparisons that are being made...but it would still be well above .05
- <u>Error rate family-wise</u> controls Type I error by taking into account the number of comparisons being made in a single analysis
- Essentially, $\frac{\alpha}{\text{number of comparisons}}$ is used for each comparison

Steps for the Tukey HSD

 The omnibus F-test does not have to be significant in order for the Tukey to control Type I error

Steps

- Obtain all possible differences between pairs of group means
- Compute the t-statistics for all possible differences
- Compare the absolute values of the t-statistics to the critical value
- Reject the null hypothesis for any absolute value of t that equals or exceeds the critical value

Tukey HSD Example

• $\overline{X}_{\text{High Dose}} = 5.00$ • $\overline{X}_{\text{Low Dose}} = 3.20$ • $\overline{X}_{\text{Placebo}} = 2.20$

• High Dose vs. Low Dose? • High Dose vs. Placebo? • Low Dose vs. Placebo?

General Strategy for MCPs

 There are a lot of MCPs offered by SPSS (as well as other MCPs that it does not offer)

- If you have equal sample sizes and equal
- variances, then use Tukey's HSD or REGWQ If sample sizes are
- unequal, then use Gabriel or
- Hochberg's GT2 • If variances are
- unequal, then use the
- Games-Howell

Equal variances /	(SSUTTED	
LSD	S-N-K	🖾 Waller-Duncan
Bonferroni	Tukey	Type I/Type II Error Ratio: 100
🔄 Sįdak	Tukey's-b	Dunnett
Scheffe	Duncan	Control Category : Last *
R-E-G-WF	Hochberg's GT2	Test
🖾 R-E-G-W Q	Cabriel	
Equal Variances M	lot Assumed	
Tamhane's T2	Dunnett's T3	🖾 Games-Howell 🔄 Dunnett's C
Significance level:	0.05	
	Continue	Cancel Help

MCPs That Are <u>Not</u> Generally Recommended

- Fisher LSD: It is used quite often but it is not great because it ignores the multiple comparison issue (inflates Type I error)
- **Duncan**: Type I error rate tends to be considerably higher than it should be
- <u>Newman-Keuls</u>: This test is commonly used but it can have family-wise error rates that are greater than the researcher intended

Additional Reading About Multiple Comparison Procedures

 Toothaker, L. E. (1993). Multiple comparison procedures.
 Newbury Park, CA: Sage.

