Two-Sample Methods

PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1

Two Samples

- The one-sample t-test and test of correlation are realistic, useful statistical tests
- $\ensuremath{\text{e}}$ The tests that we will learn next are even more useful because they do not need a known value of μ
- \odot They both use two samples
- For example, these statistics can be used to evaluate research concerning two groups of people who saw a brief film of a car wreck
 - Is there any difference in estimates of speed between those who were asked, "How fast were the cars going when they <u>hit</u> into each other?" vs "How fast were the cars going when they <u>smashed</u> into each other?"

Two Sample Methods

- Common characteristics of two sample studies
 - Utilize two groups (usually with equal sample sizes)
 - Interested in the differences in the means from the
 - Focused on a comparison of the two groups and their means rather than a comparison with some known standard value of a population parameter
- Important Note: two-sample t-tests can be used for either true experiments or non-experimental designs
 - Simply using a t-test does $\underline{\mathtt{NOT}}$ allow you to make inferences about causation
 - The capacity to make causal inferences is determined by your research design...not by your choice of test statistic

1

Two Sample Methods

- We are interested in the difference between two samples
 - · We are comparing two populations by evaluating the mean difference
- In order to evaluate the mean difference between the two populations, we sample from both of the populations and we compare the sample means on a given variable
- We need two samples (or groups) and we compare them using a continuous dependent variable
 - Example: We could compare men and women on their levels of math anxiety

Difference in Means and Mean Difference

- Consider two groups of children with the following spelling scores
 - Group 1: 5, 2, 8, 9, 10
 - Group 2: 6, 7, 5, 8, 9
- $\odot \overline{X}_{\text{Group 1}} = 6.8$
- \bullet $\overline{X}_{\text{Group 2}} = 7.0$
- © Difference in means = $\overline{X}_{\text{Group 1}}$ $\overline{X}_{\text{Group 2}}$ = 6.8 7.0 = -0.2 © Mean difference = $\frac{\sum (XG_{roun 1}, X_{Group 2})}{Number of pairs of scores}$ = $\frac{(-1)+(-5)+3+1+1}{5}$ = -0.2 © Both approaches will yield the same answer
- - We will use the "mean difference" approach when we have dependent samples

Two-Independent-Samples t-Test						
		Two-Independent-Samples t-test				
1.	Situation/hypotheses	Two samples Independent samples H _o : μ_1 = μ_2 σ^2 unknown				
2.	Test statistic	$t = \frac{(\overline{X}_1 - \overline{X}_2)}{\sqrt{\left[\frac{S_1^2(n_1 - 1) + S_2^2(n_2 - 1)}{n_1 + n_2 - 2}\right] \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$				
3.	Distribution	t _{df=n1+n2-2}				
4.	Assumptions	1. Populations are normal 2. $\sigma^2_1 = \sigma^2_2$ 3. Observations are independent	More about these later			

Two-Independent-Samples t-Test

- We have independent samples whenever there is not any obvious dependency present
 - Example: randomly assigning 50 participants to take an experimental drug and 50 participants to take a placebo would result in two independent samples
- When we cover the two-dependent-samples t-test, we will see some of these obvious ways that samples can be dependent (e.g., sibling pairs)
- \bullet Why is df= n_1+n_2-2 ?
 - The denominator for the two-independent-samples t-test has both $\mathrm{s^2}_1$ and $\mathrm{s^2}_2$
 - In $s^2_1 = \frac{\sum (X_1 \overline{X}_1)^2}{n_1 1}$, there are n_1 independent X_1 scores and one statistic
 - So, for s_1^2 , the df equals n_1 -1

 - Similarly for s^2_2 , we have the same df (i.e., df = n_2 -1) Adding the two df together gives df = n_1 -1 + n_2 -1 = n_1 + n_2 -2

Two-Independent-Samples t-Test

- one group (PC=perceived control) of 20 students thought items they submitted might be selected for the test. The other group (NC=no control) of 20 was told that writing the items was a study aid. Students were randomly assigned to groups. Exam stress was measured by self-reported number of stress symptoms
- H_o : $\mu_{PC} = \mu_{NC}$ H_1 : $\mu_{PC} \neq \mu_{NC}$ Results:

 - Group NC: $\overline{X}_1 = 15$, $s^2_1 = 60$
 - Group PC: $\overline{X}_2 = 10$, $s_2^2 = 40$
 - df = $n_1 + n_2 2 = 30 + 30 2 = 58$
 - Critical values for df = 58 are ± 2.004
 - The computed value of t = 2.24, so we reject $H_{o}\text{:}\,\mu_{PC}$ = μ_{NC} because 2.24>2.004

Two-Independent-Samples t-Test

- The sampling distribution for t for the exam stress example is shown below
- We reject H_o: μ_{PC} = μ_{NC} because t=2.24>2.004 <u>OR</u> because p=.0018< α =.05 The two groups differ significantly in number of
- symptoms of stress

Two-Independent-Samples t-Test: Robustness

- What happens to t when its assumptions are not met? Is t still a "good" statistic? Is α still equal to .05?
- The topic of robustness of test statistics examines their quality or validity when an assumption is not met (when the assumption is *violated*)
- A statistic is robust to violation of an assumption if
 - Its sampling distribution is well-fit by its theoretical distribution

 - Note that α_{true} is from the sampling distribution and α_{set} is from the theoretical distribution
- $_{\odot}$ When $\alpha_{\rm set} \text{=-}.05, \text{``approximately equals''}$ is generally defined as .04 to .06
 - · We get this information from research on statistics

Two-Independent-Samples t-Test: Robustness

	Is it met?	Is the t-test robust?	Health Analogy
Normality	Rarely	Yes, except for mixed distributions where 5-10% of the population are lumped as outliers	Cold or flu bug: Robust with some exceptions
$\sigma^2_1 = \sigma^2_2$	Rarely	Yes, on the condition that $n_1=n_2\geq 15$. The samples must be both equal and large	Measles: Robust on the condition you have had a measles shot
Independence	Usuallybecause researchers use appropriate designs and avoid obvious dependency	No, $\alpha_{\rm true} > \alpha_{\rm set}$, like .60 instead of .05, or $\alpha_{\rm true} < \alpha_{\rm set}$, like .001 instead of .05. But independence is usually met	Reactor meltdown: Not robust but you can avoid this issue

Effect Size for t-Test

- How strong is the actual effect? That is, what proportion of variability in the dependent variable is accounted for by the independent variable?
- What is needed is an estimate of the magnitude that is relatively independent of sample size
 - Estimates of magnitude or effect size tell us how strongly two or more variables are related or how large the difference is between groups
- \odot Eta squared: $\eta^2 = \frac{t^2}{t^2 + df}$

Two-Dependent-Samples t-Test

Two-Dependent-Samples t-test Two samples Situation/hypotheses Dependent samples: X,X pairs $H_0: \mu_1 = \mu_2$ σ² unknown $t = \frac{\overline{d} - \mu_d}{\sqrt{\frac{s^2 d}{N}}} \text{ (Note: } \mu_d \text{ is usually 0)}$ N = # of pairs Distribution t_{df=N-1} 1. Population of ds is normal 2. ds are independent

Two-Dependent-Samples t-Test: X,X Pairs

- We have dependent samples whenever we have X,X pairs of scores
 - · This dependency is created because of the research
- design Such pairs can happen in at least three different ways:
 - Researcher-produced pairs
 - · If students in the exam stress study had been matched on GPA,
 - the researcher would have produced the pairs

 The X scores on number of symptoms in the PC group would be dependent on the X scores in the NC group
 - Naturally occurring pairs
 - $\hbox{\bf \cdot} \ \ \text{For example, husband-wife pairs, siblings, roommates, etc.}$
 - Repeated measures
 - This could be the pre-test and post-test scores when people are measured before and after a treatment

Two-Dependent-Samples t-Test: **Test Statistic**

2

3

6

4

4

8

8

5

7

9-6 = 3

8-4 = 4

5-4 = 1

7-8 = -1

- This test statistic is based on first getting difference X, Х, $\mathbf{d} = \mathbf{X}_1 \mathbf{-X}_2$
- scores (d = X_1-X_2) \odot Then the statistics in t can
- be computed:

•	$\bar{d} = \frac{1}{2}$	<u>Σ</u> d N
		$\nabla (d - \overline{d})^2$

		IV
	c2 . =	$\sum (d - \overline{d})^2$
٠	3 d -	N -1

- Why is df = N-1?
 - The denominator for the two-dependent-samples t-test has s^2_{d}
 - In S_d^2 , there are N independent ds and one statistic (\bar{d})
 - So, for s^2_d and the two-dependent-samples t, the df equals N-1

Two-Dependent-Samples t-Test: Example

 Does a new drug (Flexx) increase flexibility in 6 physical therapy patients? Pre Post d = Post-Pre

2

4

5

6

8

13

85

1

13 45

30 75

40

6-1 = 5

8-1 = 7

13-1 = 12

45-13 = 32

75-30 = 45

85-40 = 45

- $\begin{array}{ll} \bullet & H_o: \ \mu_{Post} \leq \mu_{Pre} \\ \bullet & H_1: \ \mu_{Post} > \mu_{Pre} \\ \bullet & Results: \ for \ pre-Flexx \end{array}$ scores, $\overline{X} = 14.3$, and for post-Flexx scores, $\overline{X} = 38.6$
- \bullet Computations found \bar{d} =24.3, $s_d^2 = 347.87$, and t = 3.20
- With N=6 patients, df = N-1 = 6-1 = 5
- \odot The critical value for df = 5 is 2.015
- \odot So we reject $H_o{:}\,\mu_{Post}\!\!\le\!\!\mu_{Pre}$ because 3.20>2.015

SDSS Output								
SPSS Output								
T-TEST PAIRS-post WITH pre (FAIRED) /RITHELH-CT, -9500) /MISSING-NAMATGS.								
	T-Test							
	[DataSet0]							
		Paire	d Samples	Statistio	•		-	
		Mean	N	Std. De		Std. Error Mean		
	Pair 1 post 38.6667 6 35.13782 14.34496 pre 14.3333 6 16.96663 6.92660							
	P	aired Sample	es Correlat	ions		_		
This is the value	Pair 1 post 8	pre N	6 Corre	Aation .985	Sig. .000	-		We reject the null hypothesis
of the two-				Paire	d Samp	les Test		because ½ of
dependent-		\vdash	_		Paire	Differences 95%	Confidence Interval of the	the p-value is
samples t-test]	Mear	n Std. 0	Deviation		Error	Difference Lower Upper	less than .05
	Pair 1 post -	pre 24.333	33 1	8.65118	_	7.61431	4.76012 43.90655	
				Pain	d Samp	les Test		
	'				_	\downarrow \swarrow		
Pair 1 poet - pre (0.196) 5 .024								

Two-Dependent-Samples t-Test: Example • The sampling distribution for t for the Flexx example is shown below • We reject H_o : $\mu_{Post} \leq \mu_{Pre}$ because t=3.20>2.015• OR we reject H_o : $\mu_{Post} \leq \mu_{Pre}$ because $\frac{1}{2}$ p = .012< α =.05 and t is positive ½SPSS p-value = .012 t=3.20 Rejection