One-Sample Methods

PSY 5101: Advanced Statistics for Psychological and Behavioral Research 1

New Test Statistics

- All test statistics (inferential methods) have some things in common: use of descriptive statistics, use of probability...all of the basics of hypothesis testing. For example, all have a null hypothesis, all use α, and for all, increasing N increases power
- But some things are different. For every new test
 statistic, we will cover four topics:
 - Situation, including the hypotheses
 - Test statistic
 - Theoretical reference distribution, critical values, and decision rules
 - Assumptions

t Distributions: Degrees of Freedom

- t distributions have only one parameter: degrees of freedom (df)
 - · Definition of df: parameter of a theoretical distribution
 - The formula for df can change from one t statistic to the next df is directly tied to the amount of variability in the tail(s) of the distribution
- The working definition for df is "in an estimate of variability, df is equal to the number of independent components minus the number of parameters estimated"
 - To find the df for a test statistic, look at the estimate of variability that it uses and find the "independent components" and "number of parameters estimated"
- \odot The one-sample t has the unbiased sample variance (s^2) in its formula
- In $s^2 = \frac{\chi(\lambda X)^2}{N \lambda}$, there are N values of X (the independent components) and 1 statistic $\langle X \rangle$ that estimates the 1 parameter (μ)
- So df = N-1 for the one-sample t

Degrees of Freedom for One-Sample t

- The df for the one-sample t is N-1
- Note that the whole concept of df came with the *t*-test
- \odot There was no concept of df associated with $z_{\overline{X}}$
- \circledast So whatever changed from $z_{\overline{\chi}}$ to t is what brought with it the concept of df

• So how does t differ from $z_{\overline{X}}$? • t has s² $\overline{x} = u$

$$z_{\overline{X}} = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{N}}} \qquad t = \frac{\overline{X} - \mu}{\sqrt{\frac{S^2}{N}}}$$
No s² and No df s² and df

- The whole formula for degrees of freedom (df=N-1) goes with s^2

 Degrees of freedom are a way of "keeping score" by accounting for how many elements are allowed to vary

One-Sample t-Test: Example

- Are people who are interrupted in a task accurate in estimating how long they have spent on the task?
- People who were given 20 3-letter anagrams to solve (e.g., arn is ran) were interrupted after doing 10 of them and asked to estimate how long they had worked on the task
- ${\scriptstyle \odot}$ The researchers formed a ratio of estimated to actual time, and μ_{ratio} should be 1 if the people are accurate in estimating time
- The ratios for the N=10 people are .911 1.011
 1.807 2.010 1.911 2.156 1.251 1.516 2.730 1.160

One-Sample t-Test: Example

- \odot Now compute the mean (\overline{X}) and the unbiased variance (s²) $\bullet\ \overline{X}$ =1.646
 - s²=.3352
- Hypotheses: • H_o:µ=1
 - H₀.μ=1 • H₁:μ≠1
- So we are now ready to compute $t = \frac{\overline{X} \mu}{\sqrt{\frac{S^2}{N}}} = \frac{1.646 1}{\sqrt{\frac{3352}{10}}} = 3.53$
- \circledast Using a critical value decision rule, the upper $t_{\rm crit}\,is\,2.262$ and $3.53{>}2.262$
- Using a p-value decision rule, the SPSS p-value was
- .0064<α=.05
- So both decision rules lead us to reject H_o:µ=1
 What does this look like in the sampling distribution of t?
- what does his look like in the sampling distribution of the

Test of Correlation: Degrees of Freedom

The df for r is N-2

- describes spread of errors (or Y scores) in correlation and regression
- ${\scriptstyle \circledast}$ So, in $s_{_{Y,X}}$ we look for independent components and statistics (that estimate parameters)

$$\mathbf{S}_{y.x} = \sqrt{\frac{\sum (Y-Y')^2}{N-2}}$$

• The N values of Y are the independent components and Y'=bX+a has two statistics (b and a)

• So df=N-2

Confidence Intervals for μ

- Remember, interval estimation allows you to obtain an interval of potential values for a parameter
- For the problem about the ratio of estimated time to actual time for interrupted anagram solvers, we found \overline{X} =1.646 for our sample mean
- We know that \overline{X} is a good (unbiased) estimate of μ but we also know that \overline{X} has variability so it is unlikely that μ =1.646
- However, 1.646 should be close to $\boldsymbol{\mu}$
- Now we will see how to get an interval for μ when we do not know σ^2

